fit pressure temperature data in antoine equation using the command lsqnonlin
조회 수: 20 (최근 30일)
이전 댓글 표시
I want to fit pressure temperature data in antoine equation using the command lsqnonlin.The objective function is the minimization of the data available and data computed using the equation.The parameters of the equation are estimated after the minimization is done using this command.
Pressure=[1 5 10 20 40 60 100 200 400 760]
temp=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5]
Antoine eqaution:
ln P=A+B/(T+C)
where A,B and C are the parameters to be estimated. I am not able to write the function file properly.When i call the function file to the command lsqnonlin ,it shows error. help on the use of this command with the mention of the function file
댓글 수: 3
채택된 답변
Star Strider
2014년 6월 12일
First, lsqnonlin isn’t primarily intended for curve fitting. The lsqcurvefit function is, so use it instead.
I restated your ‘Antione’ function as a more convenient ‘anonymous function’, and used lsqcurvefit:
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
to produce:
C0 =
5.1897e+000
3.8765e+000
1.9997e+000
댓글 수: 7
Star Strider
2014년 6월 13일
Again, my pleasure!
I still recommend lsqcurvefit for the sort of study you’re doing. Easier.
추가 답변 (2개)
Carsten
2014년 7월 7일
편집: Carsten
2014년 7월 7일
I don't think that this is the solution for the problem. If i use the C0 values to calculate the antoine equation, it doesn't fit the given data.
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
ant=exp(C0(1)+(C0(2)./(x+C0(3))));
figure
hold on
grid
set(gca,'FontSize',14)
plot(x,y,'b');
plot(x,ant,'r');

댓글 수: 0
Luiz Augusto Meleiro
2022년 9월 21일
This method is highly sensitive to initial guess.
Try this:
A = 10;
B = -2000;
C = 200;
c0 = [ A; B; C ];
댓글 수: 1
Star Strider
2022년 9월 21일
‘This method is highly sensitive to initial guess.’
That is a characteristic of all nonlinear parameter estimation techniques. In the eight years since this appeared, I now routinely use the ga and similar approaches in the Global Optimization Toolbox to determine the best parameter estimates. It helps to know the approximate parameter magnitudes and ranges at the outset to be certain the estimated parameters are realistic.
참고 항목
카테고리
Help Center 및 File Exchange에서 Get Started with Curve Fitting Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!