gaussian kernel smoothing, how to optimize parameter sigma?

조회 수: 3 (최근 30일)
cyril
cyril 2014년 5월 5일
답변: Junpeng Lao 2015년 10월 9일
Hi, my question is how to find an optimal standard deviation for the gaussian kernel filter smoothing?
too large, we are losing amplitude, too small, it can be still noisy
Are there standard methods to optimize this choice? on which metrics?
x= (0:0.1:7)';
y = sin(x);
y_=y + 0.3*randn(size(y)); %noisy signal
y__ = zeros(length(x), 3); % reconstructs
for i=1:length(x)
%test different gaussian sigmas
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.2^2) ) ;
y__(i,1) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.5^2) ) ;
y__(i,2) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.8^2) ) ;
y__(i,3) = k'*y_ / sum(k);
end
plot([y y_ y__])

답변 (1개)

Junpeng Lao
Junpeng Lao 2015년 10월 9일
Hey Cyril, I come across this paper might be related to your question: http://www.princeton.edu/~samory/Papers/adaptiveKR.pdf

카테고리

Help CenterFile Exchange에서 Exploration and Visualization에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by