I need a starting point for choosing "spread" when using newrb()
조회 수: 1 (최근 30일)
이전 댓글 표시
My data sets consist of 62 inputs and one output and I want to do function approximation. I understand that the optimum "spread" value is usually determined by trial and error. However, I was wondering if there is any way of approximating this value ( just to get a sense of its greatness )? My second question is regarding the minimum number of training samples required when using newrb. Is it just like the feedforward neural networks, the more the better?
Thank you for your support
댓글 수: 0
채택된 답변
Greg Heath
2014년 4월 28일
편집: Greg Heath
2014년 4월 28일
If you standardize inputs (zscore or mapstd) the unity default is a good starting place.
The best generalization performance comes from using as few hidden neurons as possible.
Search the neural net literature (e.g., comp.ai.neural-nets FAQ) using the terms
overfitting
overtraining
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!