Panel Data Regression
조회 수: 16 (최근 30일)
이전 댓글 표시
I have to run a regression with a panel data. I have a sample of 94 elements and a time horizon of 5 years,a dependent variable (94x5) and 6 independent variables (94x5). How can I run an ols regression?
댓글 수: 0
채택된 답변
Shashank Prasanna
2014년 6월 24일
Various panel regression models are covered in the above webinar. While fixed effects can be estimated using ols (fitlm function) random effects can be estimated using mle using the fitlme function
댓글 수: 0
추가 답변 (1개)
Muhammad Anees
2012년 6월 12일
Hello: Late but a new member of Mathworks:
The following codes will work for you.
%%Classical estimation of the fixed effects panel data model
function[coeff,COVb]=panFE(Y,X,T)
% Y and X stacked by cross-section; T is the time dimension
% Estimator for panel data with fixed effects (balanced panel)
% coeff contains the estimator of the slope (slope) and the fixed effects (fe)
% COVb contains the estimated covariance matrix of the slope estimator
[NT,m] = size(Y);
[S,K]=size(X);
N=NT/T;
%within estimator
%build the matrix D
D=zeros(NT,N);
c=1;
for i=1:N,
D(c:T*i,i)=ones(T,1);
c=T*i+1;
end;
M=eye(NT)-D*inv(D'*D)*D';
b=inv(X'*M*X)*X'*M*Y;
a=inv(D'*D)*D'*(Y-X*b);
coeff.slope=b;
coeff.fe=a;
%compute the covariance matrix for the estimated coefficients
Xm=M*X;
Ym=M*Y;
res=Ym-Xm*b;
varres=(1/(NT-N-K))*res'*res;
COVb=varres*inv(X'*M*X);
댓글 수: 2
Greg Heath
2012년 6월 12일
1. What is the definition of "panel" data?
2. Why are you using INV instead of SLASH and BACKSLASH?
Hope this helps.
Greg
Tinashe Bvirindi
2014년 5월 23일
편집: Tinashe Bvirindi
2014년 5월 23일
a panel is a collection of observations across entities and across time. it has both cross sectional and time series dimensions. the reason why the backslash operator is used is that it improves the efficiency of the code and reduces the degree of error where you require a repetitive estimation of the inverse... I hope this helps
참고 항목
카테고리
Help Center 및 File Exchange에서 Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!