error in particle swarm optimization code
조회 수: 1 (최근 30일)
이전 댓글 표시
i got this code from mathworks
clear all;
numofdims = 30;
numofparticles = 50;
c1 = 2;
c2 = 2;
numofiterations = 1000;
V = zeros(50, 30);
initialpop = V;
Vmin = zeros(30, 1);
Vmax = Vmin;
Xmax = ones(30, 1) * 100;
Xmin = -Xmax;
pbestfits = zeros(50, 1);
worsts = zeros(50, 1);
bests = zeros(50, 1);
meanfits = zeros(50, 1);
pbests = zeros(50, 30);
initialpop = Xmin + (Xmax - Xmin) .* rand(numofparticles, numofdims);
X = initialpop;
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
gbestfit = minfit;
gbest = X(minfitidx, :);
for i = 1:numofdims
Vmax(i) = 0.2 * (Xmax(i) - Xmin(i));
Vmin(i) = -Vmax(i);
end
for t = 1:1000
w = 0.9 - 0.7 * (t / numofiterations);
for i = 1:numofparticles
if(fitnesses(i) < pbestfits(i))
pbestfits(i) = fitnesses(i);
pbests(i, :) = X(i, :);
end
end
for i = 1:numofparticles
for j = 1:numofdims
V(i, j) = min(max((w * V(i, j) + rand * c1 * (pbests(i, j) - X(i, j))...
+ rand * c2 * (gbest(j) - X(i, j))), Vmin(j)), Vmax(j));
X(i, j) = min(max((X(i, j) + V(i, j)), Xmin(j)), Xmax(j));
end
end
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
if(minfit < gbestfit)
gbestfit = minfit;
gbest = X(minfitidx, :);
end
worsts(t) = max(fitnesses);
bests(t) = gbestfit;
meanfits(t) = mean(fitnesses);
end
when is execute
i am getting error in line "initialpop = Xmin + (Xmax - Xmin) .* rand(numofparticles, numofdims);"
Error using *
Inner matrix dimensions must agree.
please help me
댓글 수: 0
답변 (1개)
Walter Roberson
2014년 4월 4일
That code was taken from a user posting asking for help. The code is not functional.
The user appears to have copied from a 2012 post in stackoverflow, as the same code and same error appeared then.
When you run into trouble with code that you copied, you should be asking the author of the code. Or writing your own code. If you had written the code then we could at least have asked you what the intent of the line was.
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Particle Swarm에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!