Linear Regression and Curve Fitting
조회 수: 3 (최근 30일)
이전 댓글 표시
I have a model and some data I'd like to fit to it: X_t = B1*cos(2*pi*omega*t) + B2*sin(2*pi*omega*t) + eta_t
What function would I use to conduct linear regression here, to find B1 and B2?
댓글 수: 0
채택된 답변
Wayne King
2013년 12월 4일
편집: Wayne King
2013년 12월 4일
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
beta(1) is the estimate of the constant term, beta(2) the estimate of B1 and beta(3) the estimate of B2.
If you set the random number generator to its default for reproducible results:
rng default
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
The results are:
beta =
-0.0326
1.5284
0.4643
pretty good.
댓글 수: 2
Wayne King
2013년 12월 4일
Yes, that's correct. Make sure you flip it to a column vector if it isn't already. Obviously you have to change the frequencies in the design matrix to suit your problem.
If you are trying to estimate other frequencies you need to add two columns to the design matrix per frequency --- one for cosine and one for sine
추가 답변 (1개)
Jos (10584)
2013년 12월 4일
You might be interested in the function REGRESS
X = [cos(2*pi*omega*t(:)) sin(2*pi*omega*t(:))]
B = regress(Y,X)
If you want to specify an offset B(3), add a column of ones to X
X(:,3) = 1
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Linear and Nonlinear Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!