How do I remove background noise from a sound wave?
    조회 수: 31 (최근 30일)
  
       이전 댓글 표시
    
I have a sound wave y(1:441000) gathered using a microphone and I have background n(1:441000) also gathered by the microphone. I have tried removing the background noise using a script something like:
Y=fft(y);
N=fft(n);
Yclean=Y-N;
yClean=ifft(Yclean);
However, yClean is not correct and is backwards in time. Do you have any suggestions?
Thanks,
Dave
댓글 수: 0
채택된 답변
  Pedro Villena
      
 2013년 11월 18일
        Create and Implement LMS Adaptive Filter to remove the filtered noise from desired signal
mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
      %Get input vector to filter
      for k= 1:filterLength
          if ((n-k)>0)
              input(k) = noise(n-k+1);
          end
      end
      output(n) = weights * input';  %Output of Adaptive Filter
      err(n)  = mtlb_noisy(n) - output(n); %Error Computation
      weights = weights + step_size * err(n) * input; %Weights Updating 
  end
yClean = err;
댓글 수: 1
  Tahira Batool
 2017년 4월 30일
				And what if one does not have a separate noisy signal to be removed from an original signal ,then how can we remove background noise from a signal?
추가 답변 (3개)
  Umair Nadeem
      
 2013년 11월 18일
        It would be easier if you could upload the noisy signal too. Save the variable y which supposedly has the noisy signal in a .mat file using save command and attach it with your post. Some frequency analysis could be done if the signal is available.
Also try to provide info about the signal frequency (if known), and the sampling frequency which you used to sample the data.
댓글 수: 0
  pinreddy chaitanya
 2018년 10월 22일
        
      편집: Walter Roberson
      
      
 2018년 10월 22일
  
       weights = weights + step_size * err(n) * input; %Weights Updating
what is the use of this line
댓글 수: 1
  pravin m
 2019년 11월 5일
        mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
      %Get input vector to filter
      for k= 1:filterLength
          if ((n-k)>0)
              input(k) = noise(n-k+1);
          end
      end
      output(n) = weights * input';  %Output of Adaptive Filter
      err(n)  = mtlb_noisy(n) - output(n); %Error Computation
      weights = weights + step_size * err(n) * input; %Weights Updating 
  end
yClean = err;
댓글 수: 0
참고 항목
카테고리
				Help Center 및 File Exchange에서 Audio Processing Algorithm Design에 대해 자세히 알아보기
			
	제품
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






