Pattern Recognition with Perceptron
조회 수: 7 (최근 30일)
이전 댓글 표시
Hi, all
I have six patterns as shown below
A1 = [ -1 -1 1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1;
1 1 1 -1 1 1 1];
B1 = [ 1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1];
C1 = [ -1 -1 1 1 1 1 1 ;
-1 1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
-1 1 -1 -1 -1 -1 1;
-1 -1 1 1 1 1 -1];
A2 = [ -1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1];
B2 = [ 1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1];
C2 = [ -1 -1 1 1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 1;
-1 1 -1 -1 -1 1 -1;
-1 -1 1 1 1 -1 -1];
I have to recognize these patterns with artificial neural network.
I am new in Matlab. Please help!
I need to divide this data into 2 groups.
The first group A1, B1, C1 as training data. The second group A2, B2, C2 used to validate/test the network.
Example : if I select A1 then the output must display 'A', if I select B1 then the output must display 'B', if I select A2 then the output must display 'A'.
. . # # . . .
. . . # . . .
. . . # . . .
. . # . # . .
. . # . # . . => This pattern should be recognized as A
. # # # # # .
. # . . . # .
. # . . . # .
# # # . # # #
In result program, we must explain how to get that. it mean we must explain epochs from start to finish. And Learning Rate = 1 And Threshold Value = 0.5
How do I do that?
Thanks in advance!
Network type is perceptron
댓글 수: 2
Greg Heath
2013년 11월 13일
Hmm, I submitted an answer to this. Must have made a mistake. Sorry, cannot get back to it until later.
Bottom line was you need a huge amount of input variable reduction.
Greg
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!