neural network performance analysis
조회 수: 1 (최근 30일)
이전 댓글 표시
Hello I have trained a neural network using house_dataset in matlab. When I trained the network through the following code the tr.best_tperf was reasonable: [inputs,targets] = house_dataset; hiddenLayerSize = 10; net = fitnet(hiddenLayerSize); net.divideParam.trainRatio = 70/100; net.divideParam.valRatio = 15/100; net.divideParam.testRatio = 15/100; [net,tr] = train(net,inputs,targets); outputs = net(inputs); performance = perform(net,targets,outputs)
however, when we extract the test dataset and consider the performance using these dataset the performance was unacceptable: tInd = tr.testInd; tstOutputs = net(inputs(tInd)); tstPerform = perform(net,targets(tInd),tstOutputs)
Could you please kindly explain the reason for this. Should we use another data division algorithm? best
댓글 수: 1
Greg Heath
2013년 11월 11일
편집: Greg Heath
2013년 11월 11일
As you can see from my second answer, you didn't use (:,tInd) for the input indices.
Please accept the 2nd answer.
Greg
채택된 답변
Greg Heath
2013년 11월 11일
편집: Greg Heath
2013년 11월 11일
result =
ntrial R2trn R2val R2tst
1.0000 0.8610 0.8746 0.8218
2.0000 0.8532 0.8778 0.8648
3.0000 0.8607 0.8503 0.8547
4.0000 0.8464 0.8942 0.8585
5.0000 0.8944 0.8883 0.8843
6.0000 0.8958 0.8423 0.9184
7.0000 0.9085 0.7988 0.9078
8.0000 0.8906 0.8690 0.9186
9.0000 0.8978 0.8637 0.9001
10.0000 0.8810 0.9125 0.9267
>> ytst = net(inputs(:,tr.testInd));
R2tstx = 1 - mse(ttst-ytst)/MSEtst00
R2tstx =
0.9267
Rtstx = sqrt(R2tstx)
Rtstx =
0.9627
How did you get 0.999?
댓글 수: 0
추가 답변 (2개)
Greg Heath
2013년 11월 11일
Initialize the random number generator at the beginning. So we can compare, use
rng(0).
Also make 10 designs in a loop over random weight initializations obtained by using
net = configure(net,x,t);
[net tr ] = ...
Hope this helps,
Thank you for formally accepting my answer
Greg
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!