How can I determine the angle between two vectors in MATLAB?

조회 수: 1,408 (최근 30일)
How can I determine the angle between two vectors in MATLAB?
I have two vectors. Is there a MATLAB function that can determine the angle between them?

채택된 답변

MathWorks Support Team
MathWorks Support Team 2020년 5월 27일
편집: MathWorks Support Team 2020년 5월 27일
There is no in-built MATLAB function to find the angle between two vectors. As a workaround, you can try the following:
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
  댓글 수: 7
Akihumi
Akihumi 2020년 5월 27일
Hi, did you miss out a bracket for the min? I got an error and only resolve it with the following code instead.
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
Bruno Luong
Bruno Luong 2024년 9월 28일
편집: Bruno Luong 2024년 9월 28일
This is actually incorrect for complex vectors
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
The correct code is
CosTheta = max(min(real(dot(u,v))/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = acos(CosTheta)

댓글을 달려면 로그인하십시오.

추가 답변 (2개)

James Tursa
James Tursa 2015년 7월 9일
편집: James Tursa 2019년 1월 5일
This topic has been discussed many times on the Newsgroup forum ... if I looked hard enough I'm sure I could find several Roger Stafford posts from many years ago on this. E.g., here is one of them:
The basic acos formula is known to be inaccurate for small angles. A more robust method is to use both the sin and cos of the angle via the cross and dot functions. E.g.,
atan2(norm(cross(u,v)),dot(u,v));
An extreme case to clearly show the difference:
>> a = 1e-10 % start with a very small angle
a =
1e-10
>> u = 4*[1 0 0] % arbitrary non-unit vector in X direction
u =
4 0 0
>> v = 5*[cos(a) sin(a) 0] % vector different from u by small angle
v =
5 5e-10 0
>> acos(dot(u,v)/(norm(u)*norm(v))) % acos formulation does not recover the small angle
ans =
0
>> atan2(norm(cross(u,v)),dot(u,v)) % atan2 formulation does recover the small angle
ans =
1e-10
  댓글 수: 3
James Tursa
James Tursa 2020년 2월 3일
To get a full circle result where "direction" of the angle is important, see this link for one possible strategy:
Bruno Luong
Bruno Luong 2022년 12월 3일
@Felix Fischer If you want to find angles of multiple vector pairs put in matrix, use vecnorm rather than norm.

댓글을 달려면 로그인하십시오.


Bruno Luong
Bruno Luong 2024년 9월 28일
편집: Bruno Luong 2024년 9월 28일
There is a good formula from Kahan, chap 12 of this Mindless paper, for given x and y two vectors of length(m) - in R^m, the angle theta between x and y can be computed as
nx = norm(x);
ny = norm(y);
xx = x*ny;
yy = y*nx;
a = xx-yy;
b = xx+yy;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
The advantage of this method is good stability and in case of
nx = norm(x) = ny = norm(y) (= 1, not required)
the code can be reduced to
a = x-y;
b = x+y;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
or more compactly
theta = 2*atan(sqrt(sum((x-y).^2)/sum((x+y).^2)))
% or
theta = 2*atan(norm(x-y)/norm(x+y))
The number of arithmetic operations is less than the atan2 formula in James Tursa's answer (only applied in R^3) which is numericall more stable than TMW answer using only dot product.
Note that this implementation does not have issue when b is all-0 vector. But in case both x and y are 0s - so as a and b, Kahan method returns NaN rather than 0 as with atan2. IMO NaN is mathemetically more coherent result.
Beside this degenerated case the result is in interval [0,pi].
NOTE: For complex vectors replace any statements of the form sum(u.^2) by sum(u.*conj(u)); with u being a, b, or x-y, x+y.
  댓글 수: 1
Bruno Luong
Bruno Luong 2024년 10월 1일
Same comparison and observe the robustness
a = 1e-10 % start with a very small angle
a = 1.0000e-10
u = 4*[1 0 0] % arbitrary non-unit vector in X direction
u = 1×3
4 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
v = 5*[cos(a) sin(a) 0] % vector different from u by small angle
v = 1×3
5.0000 0.0000 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
acos(dot(u,v)/(norm(u)*norm(v))) % acos formulation does not recover the small angle
ans = 0
atan2(norm(cross(u,v)),dot(u,v)) % atan2 formulation does recover the small angle
ans = 1.0000e-10
nu = norm(u);
nv = norm(v);
xx = u*nv;
yy = v*nu;
a = xx-yy;
b = xx+yy;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
theta = 1.0000e-10

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Elementary Math에 대해 자세히 알아보기

제품


릴리스

R13SP1

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by