Train a Semantic Segmentation Network
Load the training data.
dataSetDir = fullfile(toolboxdir("vision"),"visiondata","triangleImages"); imageDir = fullfile(dataSetDir,"trainingImages"); labelDir = fullfile(dataSetDir,"trainingLabels");
Create an image datastore for the images.
imds = imageDatastore(imageDir);
Create a pixelLabelDatastore
for the ground truth pixel labels.
classNames = ["triangle" "background"]; labelIDs = [255 0]; pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
Visualize training images and ground truth pixel labels.
I = read(imds); C = read(pxds); I = imresize(I,5,"nearest"); L = imresize(uint8(C{1}),5,"nearest"); imshowpair(I,L,"montage")
Combine the image and pixel label datastore for training.
trainingData = pixelLabelImageDatastore(imds,pxds);
Create a semantic segmentation network. This network uses a simple semantic segmentation network based on a downsampling and upsampling design.
numFilters = 64; filterSize = 3; numClasses = 2; layers = [ imageInputLayer([32 32 1]) convolution2dLayer(filterSize,numFilters,Padding=1) reluLayer() maxPooling2dLayer(2,Stride=2) convolution2dLayer(filterSize,numFilters,Padding=1) reluLayer() transposedConv2dLayer(4,numFilters,Stride=2,Cropping=1); convolution2dLayer(1,numClasses); softmaxLayer() ];
Setup training options.
opts = trainingOptions("sgdm", ... InitialLearnRate=1e-3, ... MaxEpochs=100, ... MiniBatchSize=64);
Define a loss function suitable for pixel classification.
function loss = modelLoss(Y,T) mask = ~isnan(T); T(isnan(T)) = 0; loss = crossentropy(Y,T,Mask=mask,NormalizationFactor="mask-included"); end
Train the network.
net = trainnet(trainingData,layers,@modelLoss,opts);
Iteration Epoch TimeElapsed LearnRate TrainingLoss _________ _____ ___________ _________ ____________ 1 1 00:00:06 0.001 41.892 50 17 00:00:21 0.001 0.93931 100 34 00:00:35 0.001 0.7432 150 50 00:00:52 0.001 0.4558 200 67 00:01:10 0.001 0.48874 250 84 00:01:32 0.001 0.43741 300 100 00:01:44 0.001 0.32055 Training stopped: Max epochs completed
Read and display a test image.
testImage = imread("triangleTest.jpg");
imshow(testImage)
Segment the test image and display the results.
C = semanticseg(testImage,net,Classes=classNames); B = labeloverlay(testImage,C); imshow(B)
See Also
trainnet
(Deep Learning Toolbox)