# refit

Refit neighborhood component analysis (NCA) model for regression

## Description

refits the model `mdlrefit`

= refit(`mdl`

,`Name=Value`

)`mdl`

, with modified parameters specified by one
or more name-value arguments.

## Examples

### Refit NCA Model for Regression with Modified Settings

Load the sample data.

`load("robotarm.mat")`

The `robotarm`

(pumadyn32nm) data set is created using a robot arm simulator with 7168 training and 1024 test observations with 32 features [1], [2]. This is a preprocessed version of the original data set. Data are preprocessed by subtracting off a linear regression fit followed by normalization of all features to unit variance.

Compute the generalization error without feature selection.

nca = fsrnca(Xtrain,ytrain,FitMethod="none", ... Standardize=true); L = loss(nca,Xtest,ytest)

L = 0.9017

Now, refit the model and compute the prediction loss with feature selection, with $$\lambda $$ = 0 (no regularization term) and compare to the previous loss value, to determine feature selection seems necessary for this problem. For the settings that you do not change, `refit`

uses the settings of the initial model `nca`

. For example, it uses the feature weights found in `nca`

as the initial feature weights.

```
nca2 = refit(nca,FitMethod="exact",Lambda=0);
L2 = loss(nca2,Xtest,ytest)
```

L2 = 0.1088

The decrease in the loss suggests that feature selection is necessary.

Plot the feature weights.

`plot(nca2.FeatureWeights,"o")`

Tuning the regularization parameter usually improves the results. Suppose that, after tuning $$\lambda $$ using cross-validation as in Tune Regularization Parameter in NCA for Regression, the best $$\lambda $$ value found is 0.0035. Refit the `nca`

model using this $$\lambda $$ value and stochastic gradient descent as the solver. Compute the prediction loss.

nca3 = refit(nca2,FitMethod="exact",Lambda=0.0035, ... Solver="sgd"); L3 = loss(nca3,Xtest,ytest)

L3 = 0.0573

Plot the feature weights.

`plot(nca3.FeatureWeights,"o")`

After tuning the regularization parameter, the loss decreased even more and the software identified four of the features as relevant.

**References**

[1] Rasmussen, C. E., R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani. The DELVE Manual, 1996, https://mlg.eng.cam.ac.uk/pub/pdf/RasNeaHinetal96.pdf

## Input Arguments

`mdl`

— Neighborhood component analysis model for regression

`FeatureSelectionNCARegression`

object

Neighborhood component analysis model or classification, specified
as a `FeatureSelectionNCARegression`

object.

### Name-Value Arguments

Specify optional pairs of arguments as
`Name1=Value1,...,NameN=ValueN`

, where `Name`

is
the argument name and `Value`

is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.

**Example: **`refit(mdl,Lambda=0.01)`

refits the model
`mdl`

with a lambda value of
`0.01`

.

**Fitting Options**

`FitMethod`

— Method for fitting the model

`mdl.FitMethod`

(default) | `"exact"`

| `"none"`

| `"average"`

Method for fitting the model, specified as one of the following.

`"exact"`

— Performs fitting using all of the data.`"none"`

— No fitting. Use this option to evaluate the generalization error of the NCA model using the initial feature weights supplied in the call to`fsrnca`

.`"average"`

— The function divides the data into partitions (subsets), fits each partition using the`exact`

method, and returns the average of the feature weights. You can specify the number of partitions using the`NumPartitions`

name-value argument.

**Example: **`FitMethod="none"`

`Lambda`

— Regularization parameter

`mdl.Lambda`

(default) | nonnegative scalar value

Regularization parameter, specified as a nonnegative scalar value.

For *n* observations, the best `Lambda`

value
that minimizes the generalization error of the NCA model is expected
to be a multiple of 1/*n*

**Example: **`Lambda=0.01`

**Data Types: **`double`

| `single`

`Solver`

— Solver type

`mdl.Solver`

(default) | `"lbfgs"`

| `"sgd"`

| `"minibatch-lbfgs"`

Solver type for estimating feature weights, specified as one of the following.

`"lbfgs"`

— Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (LBFGS algorithm)`"sgd"`

— Stochastic gradient descent`"minibatch-lbfgs"`

— Stochastic gradient descent with LBFGS algorithm applied to mini-batches

**Example: **`Solver="minibatch-lbfgs"`

`InitialFeatureWeights`

— Initial feature weights

`mdl.InitialFeatureWeights`

(default) | *p*-by-1 vector of real positive scalar values

Initial feature weights, specified as a *p*-by-1 vector of real positive
scalar values.

**Data Types: **`double`

| `single`

`Verbose`

— Indicator for verbosity level

`mdl.Verbose`

(default) | 0 | 1 | >1

Indicator for verbosity level for the convergence summary display, specified as one of the following.

0 — No convergence summary

1 — Convergence summary including iteration number, norm of the gradient, and objective function value.

>1 — More convergence information depending on the fitting algorithm

When using solver

`"minibatch-lbfgs"`

and verbosity level >1, the convergence information includes iteration log from intermediate mini-batch LBFGS fits.

**Example: **`Verbose=2`

**Data Types: **`double`

| `single`

**LBFGS or Mini-Batch LBFGS Options**

`GradientTolerance`

— Relative convergence tolerance

`mdl.GradientTolerance`

(default) | positive real scalar value

Relative convergence tolerance on the gradient norm for solver `lbfgs`

,
specified as a positive real scalar value.

**Example: **`GradientTolerance=0.00001`

**Data Types: **`double`

| `single`

**SGD or Mini-Batch LBFGS Options**

`InitialLearningRate`

— Initial learning rate for solver `sgd`

`mdl.InitialLearningRate`

(default) | positive real scalar value

Initial learning rate for solver `sgd`

, specified as a positive scalar
value.

When using solver type `"sgd"`

, the learning rate decays over iterations
starting with the value specified for `InitialLearningRate`

.

**Example: **`InitialLearningRate=0.8`

**Data Types: **`double`

| `single`

`PassLimit`

— Maximum number of passes for solver `"sgd"`

`mdl.PassLimit`

(default) | positive integer value

Maximum number of passes for solver `"sgd"`

(stochastic gradient
descent), specified as a positive integer value. Every pass processes
`size(mdl.X,1)`

observations.

**Example: **`PassLimit=10`

**Data Types: **`double`

| `single`

**SGD or LBFGS or Mini-Batch LBFGS Options**

`IterationLimit`

— Maximum number of iterations

`mdl.IterationLimit`

(default) | positive integer value

Maximum number of iterations, specified as a positive integer.

**Example: **`IterationLimit=250`

**Data Types: **`double`

| `single`

## Output Arguments

`mdlrefit`

— Neighborhood component analysis model for regression

`FeatureSelectionNCARegression`

object

Neighborhood component analysis model or classification, returned as a `FeatureSelectionNCARegression`

object. You can either save the
results as a new model or update the existing model as ```
mdl =
refit(mdl,Name=Value)
```

.

## Version History

**Introduced in R2016b**

## See Also

`FeatureSelectionNCARegression`

| `loss`

| `fsrnca`

| `predict`

| `selectFeatures`

## MATLAB 명령

다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.

명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)