modelCalibration
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs
Since R2023a
Syntax
Description
computes the R-square, root mean square error (RMSE), correlation, and sample mean
error of observed vs. predicted loss given default (LGD) data.
CalMeasure
= modelCalibration(lgdModel
,data
)modelCalibration
supports comparison against a reference
model and also supports different correlation types. By default,
modelCalibration
computes the metrics in the LGD scale. You
can use the ModelLevel
name-value pair argument to compute
metrics using the underlying model's transformed scale.
[
specifies options using one or more name-value pair arguments in addition to the
input arguments in the previous syntax.CalMeasure
,CalData
] = modelCalibration(___,Name,Value
)
Examples
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Regression LGD Model
This example shows how to use fitLGDModel
to fit data with a Regression
model and then use modelCalibration
to compute the R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.
Load Data
Load the loss given default data.
load LGDData.mat
head(data)
LTV Age Type LGD _______ _______ ___________ _________ 0.89101 0.39716 residential 0.032659 0.70176 2.0939 residential 0.43564 0.72078 2.7948 residential 0.0064766 0.37013 1.237 residential 0.007947 0.36492 2.5818 residential 0 0.796 1.5957 residential 0.14572 0.60203 1.1599 residential 0.025688 0.92005 0.50253 investment 0.063182
Partition Data
Separate the data into training and test partitions.
rng('default'); % for reproducibility NumObs = height(data); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Create Regression
LGD Model
Use fitLGDModel
to create a Regression
model using training data.
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
Regression with properties: ResponseTransform: "logit" BoundaryTolerance: 1.0000e-05 ModelID: "Regression" Description: "" UnderlyingModel: [1x1 classreg.regr.CompactLinearModel] PredictorVars: ["LTV" "Age" "Type"] ResponseVar: "LGD" WeightsVar: ""
Display the underlying model.
lgdModel.UnderlyingModel
ans = Compact linear regression model: LGD_logit ~ 1 + LTV + Age + Type Estimated Coefficients: Estimate SE tStat pValue ________ ________ _______ __________ (Intercept) -4.7549 0.36041 -13.193 3.0997e-38 LTV 2.8565 0.41777 6.8377 1.0531e-11 Age -1.5397 0.085716 -17.963 3.3172e-67 Type_investment 1.4358 0.2475 5.8012 7.587e-09 Number of observations: 2093, Error degrees of freedom: 2089 Root Mean Squared Error: 4.24 R-squared: 0.206, Adjusted R-Squared: 0.205 F-statistic vs. constant model: 181, p-value = 2.42e-104
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs
Use modelCalibration
to compute the RSquared
, RMSE
, Correlation
, and SampleMeanError
of the predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:))
CalMeasure=1×4 table
RSquared RMSE Correlation SampleMeanError
________ _______ ___________ _______________
Regression 0.070867 0.25988 0.26621 0.10759
CalData=1394×4 table
Observed Predicted_Regression Residuals_Regression Weights
_________ ____________________ ____________________ _______
0.0064766 0.00091169 0.0055649 1
0.007947 0.0036758 0.0042713 1
0.063182 0.18774 -0.12456 1
0 0.0010877 -0.0010877 1
0.10904 0.011213 0.097823 1
0 0.041992 -0.041992 1
0.89463 0.052947 0.84168 1
0 3.7188e-06 -3.7188e-06 1
0.072437 0.0090124 0.063425 1
0.036006 0.023928 0.012078 1
0 0.0034833 -0.0034833 1
0.39549 0.0065253 0.38896 1
0.057675 0.071956 -0.014281 1
0.014439 0.0061499 0.008289 1
0 0.0012183 -0.0012183 1
0 0.0019828 -0.0019828 1
⋮
Generate a scatter plot of predicted and observed LGDs using modelCalibrationPlot
.
modelCalibrationPlot(lgdModel,data(TestInd,:),ModelLevel="underlying")
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Tobit LGD Model
This example shows how to use fitLGDModel
to fit data with a Tobit
model and then use modelCalibration
to compute R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.
Load Data
Load the loss given default data.
load LGDData.mat
head(data)
LTV Age Type LGD _______ _______ ___________ _________ 0.89101 0.39716 residential 0.032659 0.70176 2.0939 residential 0.43564 0.72078 2.7948 residential 0.0064766 0.37013 1.237 residential 0.007947 0.36492 2.5818 residential 0 0.796 1.5957 residential 0.14572 0.60203 1.1599 residential 0.025688 0.92005 0.50253 investment 0.063182
Partition Data
Separate the data into training and test partitions.
rng('default'); % for reproducibility NumObs = height(data); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Create Tobit
LGD Model
Use fitLGDModel
to create a Tobit
model using training data.
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
Tobit with properties: CensoringSide: "both" LeftLimit: 0 RightLimit: 1 Weights: [0x1 double] ModelID: "Tobit" Description: "" UnderlyingModel: [1x1 risk.internal.credit.TobitModel] PredictorVars: ["LTV" "Age" "Type"] ResponseVar: "LGD" WeightsVar: ""
Display the underlying model.
disp(lgdModel.UnderlyingModel)
Tobit regression model: LGD = max(0,min(Y*,1)) Y* ~ 1 + LTV + Age + Type Estimated coefficients: Estimate SE tStat pValue _________ _________ _______ __________ (Intercept) 0.058257 0.027277 2.1357 0.032819 LTV 0.20126 0.031352 6.4193 1.6887e-10 Age -0.095407 0.0072648 -13.133 0 Type_investment 0.10208 0.018077 5.6471 1.8544e-08 (Sigma) 0.29288 0.0057081 51.309 0 Number of observations: 2093 Number of left-censored observations: 547 Number of uncensored observations: 1521 Number of right-censored observations: 25 Log-likelihood: -698.383
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs
Use modelCalibration
to compute RSquared
, RMSE
, Correlation
, and SampleMeanError
of predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")
CalMeasure=1×4 table
RSquared RMSE Correlation SampleMeanError
________ _______ ___________ _______________
Tobit 0.08527 0.23712 0.29964 -0.034412
CalData=1394×4 table
Observed Predicted_Tobit Residuals_Tobit Weights
_________ _______________ _______________ _______
0.0064766 0.087889 -0.081412 1
0.007947 0.12432 -0.11638 1
0.063182 0.32043 -0.25724 1
0 0.093354 -0.093354 1
0.10904 0.16718 -0.058144 1
0 0.22382 -0.22382 1
0.89463 0.23695 0.65768 1
0 0.010234 -0.010234 1
0.072437 0.1592 -0.086761 1
0.036006 0.19893 -0.16292 1
0 0.12764 -0.12764 1
0.39549 0.14568 0.2498 1
0.057675 0.26181 -0.20413 1
0.014439 0.14483 -0.13039 1
0 0.094123 -0.094123 1
0 0.10944 -0.10944 1
⋮
Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot
.
modelCalibrationPlot(lgdModel,data(TestInd,:))
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Beta LGD Model
This example shows how to use fitLGDModel
to fit data with a Beta
model and then use modelCalibration
to compute R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.
Load Data
Load the loss given default data.
load LGDData.mat
head(data)
LTV Age Type LGD _______ _______ ___________ _________ 0.89101 0.39716 residential 0.032659 0.70176 2.0939 residential 0.43564 0.72078 2.7948 residential 0.0064766 0.37013 1.237 residential 0.007947 0.36492 2.5818 residential 0 0.796 1.5957 residential 0.14572 0.60203 1.1599 residential 0.025688 0.92005 0.50253 investment 0.063182
Partition Data
Separate the data into training and test partitions.
rng('default'); % for reproducibility NumObs = height(data); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Create Beta
LGD Model
Use fitLGDModel
to create a Beta
model using training data.
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
Beta with properties: BoundaryTolerance: 1.0000e-05 ModelID: "Beta" Description: "" UnderlyingModel: [1x1 risk.internal.credit.BetaModel] PredictorVars: ["LTV" "Age" "Type"] ResponseVar: "LGD" WeightsVar: ""
Display the underlying model.
disp(lgdModel.UnderlyingModel)
Beta regression model: logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi Estimated coefficients: Estimate SE tStat pValue ________ ________ _______ __________ (Intercept)_mu -1.3772 0.13201 -10.433 0 LTV_mu 0.6027 0.15087 3.9948 6.6993e-05 Age_mu -0.47464 0.040264 -11.788 0 Type_investment_mu 0.45372 0.085143 5.3289 1.0941e-07 (Intercept)_phi -0.16336 0.12591 -1.2974 0.19462 LTV_phi 0.055886 0.14719 0.37969 0.70421 Age_phi 0.22887 0.040335 5.6743 1.586e-08 Type_investment_phi -0.14102 0.078155 -1.8044 0.071313 Number of observations: 2093 Log-likelihood: -5291.04
Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs
Use modelCalibration
to compute RSquared
, RMSE
, Correlation
, and SampleMeanError
of predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")
CalMeasure=1×4 table
RSquared RMSE Correlation SampleMeanError
________ _______ ___________ _______________
Beta 0.080804 0.24112 0.29448 -0.052396
CalData=1394×4 table
Observed Predicted_Beta Residuals_Beta Weights
_________ ______________ ______________ _______
0.0064766 0.093695 -0.087218 1
0.007947 0.14915 -0.1412 1
0.063182 0.35263 -0.28945 1
0 0.096434 -0.096434 1
0.10904 0.18858 -0.079542 1
0 0.2595 -0.2595 1
0.89463 0.26767 0.62696 1
0 0.021315 -0.021315 1
0.072437 0.17736 -0.10492 1
0.036006 0.22556 -0.18955 1
0 0.13369 -0.13369 1
0.39549 0.16768 0.2278 1
0.057675 0.29159 -0.23392 1
0.014439 0.1617 -0.14726 1
0 0.10506 -0.10506 1
0 0.1161 -0.1161 1
⋮
Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot
.
modelCalibrationPlot(lgdModel,data(TestInd,:))
Input Arguments
lgdModel
— Loss given default model
Regression
object | Tobit
object | Beta
object
Loss given default model, specified as a previously created Regression
,
Tobit
, or Beta
object using
fitLGDModel
.
Data Types: object
data
— Data
table
Data, specified as a
NumRows
-by-NumCols
table with
predictor and response values. The variable names and data types must be
consistent with the underlying model.
Data Types: table
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(lgdModel,data(TestInd,:),DataID='Testing',CorrelationType='spearman')
CorrelationType
— Correlation type
"pearson"
(default) | character vector with value of 'pearson'
, 'spearman'
, or
'kendall'
| string with value of "pearson"
,
"spearman"
, or
"kendall'"
Correlation type, specified as CorrelationType
and
a character vector or string.
Data Types: char
| string
DataID
— Data set identifier
""
(default) | character vector | string
Data set identifier, specified as DataID
and a
character vector or string. The DataID
is included in
the output for reporting purposes.
Data Types: char
| string
ModelLevel
— Model level
'top'
(default) | character vector with value 'top'
or 'underlying'
| string with value "top"
or
"underlying"
Model level, specified as ModelLevel
and a
character vector or string.
'top'
— The accuracy metrics are computed in the LGD scale at the top model level.'underlying'
— For aRegression
model only, the metrics are computed in the underlying model's transformed scale. The metrics are computed on the transformed LGD data.
Data Types: char
| string
ReferenceLGD
— LGD values predicted for data
by reference model
[ ]
(default) | numeric vector
ReferenceID
— Identifier for the reference model
'Reference'
(default) | character vector | string
Identifier for the reference model, specified as
ReferenceID
and a character vector or string.
'ReferenceID'
is used in the
modelCalibration
output for reporting
purposes.
Data Types: char
| string
Output Arguments
CalMeasure
— Calibration measure
table
Calibration measure, returned as a table with columns
'RSquared'
, 'RMSE'
,
'Correlation'
, and
'SampleMeanError'
. CalMeasure
has
one row if only the lgdModel
accuracy is measured and
it has two rows if reference model information is given. The row names of
CalMeasure
report the model ID and data ID (if
provided).
CalData
— Calibration data
table
Calibration data, returned as a table with observed LGD values, predicted
LGD values, and residuals (observed minus predicted). Additional columns for
predicted and residual values are included for the reference model, if
provided. The ModelID
and
ReferenceID
labels are appended in the column
names. The last column contains Weights
.
More About
Model Calibration
Model calibration measures the accuracy of the predicted probability of LGD values using different metrics.
R-squared — To compute the R-squared metric,
modelCalibration
fits a linear regression of the observed LGD values against the predicted LGD valuesThe R-square of this regression is reported. For more information, see Coefficient of Determination (R-Squared).
RMSE — To compute the root mean square error (RMSE),
modelCalibration
uses the following formula where N is the number of observations:Correlation — This is the correlation between the observed and predicted LGD:
For more information and details about the different correlation types, see
corr
.Sample mean error — This is the difference between the mean observed LGD and the mean predicted LGD or, equivalently, the mean of the residuals:
If the LGD model object is created by using the
WeightsVar
name-value argument, the R-square, RMSE, correlation, and sample mean error of the predicted and observed LGD data are weighted quantities.
References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
Version History
Introduced in R2023aR2024a: Support for Weights
column in CalData
output
The CalData
output supports an additional column for
Weights
.
See Also
Tobit
| Regression
| Beta
| modelCalibrationPlot
| modelDiscriminationPlot
| modelDiscrimination
| predict
| fitLGDModel
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)