Main Content

rfckt.hybridg

Inverse hybrid connected network

Description

Use the rfckt.hybridg object to create inverse hybrid connected networks of linear RF objects characterized by the components that make up the network.

Note

circuit object and add function is recommended over rfckt.hybrid because the add function enables you to insert linear and nonlinear elements into a circuit object to create networks of any topology which includes a hybrid, an inverse hybrid, a parallel, and a series connected network. (since R2023b)

Creation

Description

h = rfckt.hybridg returns an inverse hybrid connected network object whose properties all have their default values.

h = rfckt.hybridg('Ckts',value) returns a cascaded network with elements specified in the name-value pair property Ckts.

example

Properties

expand all

This property is read-only.

Computed S-parameters, noise figure, OIP3, and group delay values, specified as an rfdata.data object. For more information, see Algorithms.

Data Types: function_handle

Circuit objects in network, specified as a cell array of object handles. All circuits must be 2-port. By default, this property is empty.

Data Types: char

This property is read-only.

Object name, specified as a 1-by-N character array.

Data Types: char

This property is read-only.

Number of ports, specified as a positive integer. The default value is 2.

Data Types: double

Object Functions

analyzeAnalyze RFCKT object in frequency domain
calculateCalculate specified parameters for rfckt objects or rfdata objects
circleDraw circles on Smith Chart
extractExtract specified network parameters from rfckt object or data object
listformatList valid formats for specified circuit object parameter
listparamList valid parameters for specified circuit object
loglogPlot specified circuit object parameters using log-log scale
plotPlot circuit object parameters on X-Y plane
plotyyPlot parameters of RF circuit or RF data on xy-plane with two Y-axes
getopDisplay operating conditions
polarPlot specified object parameters on polar coordinates
semilogxPlot RF circuit object parameters using log scale for x-axis
semilogyPlot RF circuit object parameters using log scale for y-axis
smithPlot circuit object parameters on Smith Chart
writeWrite RF data from circuit or data object to file
getz0Calculate characteristic impedance of RFCKT transmission line object
readRead RF data from file to new or existing circuit or data object
restoreRestore data to original frequencies
getopDisplay operating conditions
groupdelayGroup delay of S-parameter object or RF filter object or RF Toolbox circuit object

Examples

collapse all

Create inverse hybrid connected networks of linear RF objects with two transmission line objects using rfckt.hybridg.

tx1 = rfckt.txline;
tx2 = rfckt.txline;
invhyb = rfckt.hybridg('Ckts',{tx1,tx2})
invhyb = 
   rfckt.hybridg with properties:

              Ckts: {[1x1 rfckt.txline]  [1x1 rfckt.txline]}
             nPort: 2
    AnalyzedResult: []
              Name: 'Hybrid G Connected Network'

Algorithms

The analyze method computes the S-parameters of the AnalyzedResult property using the data stored in the Ckts property as follows:

  1. The analyze method first calculates the g matrix of the inverse hybrid network. It starts by converting each component network's parameters to a g matrix. The following figure shows an inverse hybrid connected network consisting of two 2-port networks, each represented by its g matrix,

    Two 2-port inverse hybrid connected networks

    where

    [g]=[g11g12g21g22][g]=[g11g12g21g22]

  2. The analyze method then calculates the g matrix for the inverse hybrid network by calculating the sum of the g matrices of the individual networks. The following equation illustrates the calculations for two 2-port networks.

    [g]=[g11+g11g12+g12g21+g21g22+g22]

  3. Finally, analyze converts the g matrix of the inverse hybrid network to S-parameters at the frequencies specified in the analyze input argument freq.

References

[1] Davis, A.M., Linear Circuit Analysis, PWS Publishing Company, 1998.

Version History

Introduced before R2006a