Main Content

이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.

진자가 위쪽으로 똑바로 서서 균형을 유지하도록 DDPG 에이전트 훈련시키기

이 예제에서는 Simulink®에서 모델링된 진자가 위쪽으로 똑바로 서서 균형을 유지하도록 DDPG(심층 결정적 정책 경사법) 에이전트를 훈련시키는 방법을 보여줍니다.

DDPG 에이전트에 대한 자세한 내용은 Deep Deterministic Policy Gradient (DDPG) Agents 항목을 참조하십시오. MATLAB®에서 DDPG 에이전트를 훈련시키는 예제는 Train DDPG Agent to Control Double Integrator System 항목을 참조하십시오.

진자 스윙업 모델

이 예제의 강화 학습 환경은 처음에 아래쪽을 향해 매달려 있는 마찰 없는 단순 진자입니다. 훈련 목표는 최소한의 제어 노력으로 이 진자가 넘어지지 않고 똑바로 서 있게 만드는 것입니다.

모델을 엽니다.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

이 모델의 경우 다음이 적용됩니다.

  • 위쪽으로 똑바로 균형이 잡혀 있을 때의 진자 위치는 0라디안이고, 아래쪽으로 매달려 있을 때의 위치는 pi라디안입니다.

  • 에이전트에서 환경으로 전달되는 토크 행동 신호는 –2Nm에서 2Nm까지입니다.

  • 환경에서 관측하는 값은 진자 각의 사인, 진자 각의 코사인, 진자 각 도함수입니다.

  • 매 시간 스텝마다 제공되는 보상 rt는 다음과 같습니다.

rt=-(θt2+0.1θt˙2+0.001ut-12)

여기서 각 요소는 다음과 같습니다.

  • θt는 똑바로 세워진 위치에서의 변위 각도입니다.

  • θt˙는 변위 각도의 도함수입니다.

  • ut-1은 이전 시간 스텝의 제어 노력입니다.

이 모델에 대한 자세한 내용은 Load Predefined Simulink Environments 항목을 참조하십시오.

환경 인터페이스 만들기

진자에 대해 미리 정의된 환경 인터페이스를 만듭니다.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')
env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

인터페이스에는 에이전트가 –2Nm에서 2Nm 사이의 토크 값을 진자에 적용할 수 있는 연속 행동 공간이 있습니다.

환경의 관측값을 진자 각의 사인, 진자 각의 코사인, 진자 각 도함수가 되도록 설정합니다.

numObs = 3;
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');

진자의 초기 조건을 아래쪽을 향해 매달려 있는 것으로 정의하려면 익명 함수 핸들을 사용하여 환경 재설정 함수를 지정하십시오. 이 재설정 함수는 모델 작업 공간 변수 theta0pi로 설정합니다.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

시뮬레이션 시간 Tf와 에이전트 샘플 시간 Ts를 초 단위로 지정합니다.

Ts = 0.05;
Tf = 20;

재현이 가능하도록 난수 생성기 시드값을 고정합니다.

rng(0)

DDPG 에이전트 만들기

DDPG 에이전트는 관측값과 행동이 주어지면 크리틱 가치 함수 표현을 사용하여 장기 보상을 근사합니다. 크리틱을 만들려면 먼저 2개의 입력값(상태와 행동) 및 1개의 출력값을 갖는 심층 신경망을 만드십시오. 심층 신경망 가치 함수 표현을 만드는 방법에 대한 자세한 내용은 Create Policies and Value Functions 항목을 참조하십시오.

statePath = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')];
actionPath = [
    featureInputLayer(1,'Normalization','none','Name','action')
    fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
criticNetwork = dlnetwork(criticNetwork);

크리틱 신경망 구성을 확인합니다.

figure
plot(layerGraph(criticNetwork))

Figure contains an axes object. The axes object contains an object of type graphplot.

rlOptimizerOptions 객체를 사용하여 크리틱 표현에 대한 옵션을 지정합니다.

criticOpts = rlOptimizerOptions('LearnRate',1e-03,'GradientThreshold',1);

지정된 심층 신경망과 옵션을 사용하여 크리틱 표현을 만듭니다. 환경 인터페이스에서 얻는 크리틱에 대한 행동 및 관측값 정보도 지정해야 합니다. 자세한 내용은 rlQValueRepresentation 항목을 참조하십시오.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlQValueFunction(criticNetwork,obsInfo,actInfo,'ObservationInputNames','observation','ActionInputNames','action');

DDPG 에이전트는 관측값이 주어지면 액터 표현을 사용하여 어떤 행동을 수행할지 결정합니다. 액터를 만들려면 먼저 관측값에 해당하는 1개의 입력값 및 행동에 해당하는 1개의 출력값을 갖는 심층 신경망을 만드십시오.

크리틱과 비슷한 방식으로 액터를 생성합니다. 자세한 내용은 rlDeterministicActorRepresentation 항목을 참조하십시오.

actorNetwork = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','ActorFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(300,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(1,'Name','ActorFC3')
    tanhLayer('Name','ActorTanh')
    scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];
actorNetwork = dlnetwork(actorNetwork);

actorOpts = rlOptimizerOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);

DDPG 에이전트를 만들려면 먼저 rlDDPGAgentOptions 객체를 사용하여 DDPG 에이전트 옵션을 지정하십시오.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',Ts,...
    'CriticOptimizerOptions',criticOpts,...
    'ActorOptimizerOptions',actorOpts,...
    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

그런 다음, 지정된 액터 표현, 크리틱 표현, 에이전트 옵션을 사용하여 DDPG 에이전트를 만듭니다. 자세한 내용은 rlDDPGAgent 항목을 참조하십시오.

agent = rlDDPGAgent(actor,critic,agentOpts);

에이전트 훈련시키기

에이전트를 훈련시키려면 먼저 훈련 옵션을 지정하십시오. 이 예제에서는 다음 옵션을 사용합니다.

  • 최대 50000개의 에피소드에 대해 훈련을 실행하며, 각 에피소드마다 최대 ceil(Tf/Ts)개의 시간 스텝이 지속됩니다.

  • 에피소드 관리자 대화 상자에 훈련 진행 상황을 표시하고(Plots 옵션 설정) 명령줄 표시를 비활성화합니다(Verbose 옵션을 false로 설정).

  • 연속되는 5개의 에피소드에서 에이전트가 받은 평균 누적 보상이 –740점 이상일 때 훈련을 중지합니다. 이 시점에서 에이전트는 진자가 똑바로 서 있는 위치에서 최소한의 제어 노력을 사용하여 빠르게 진자의 균형을 유지할 수 있습니다.

  • 누적 보상이 –740점 이상인 각 에피소드에 대한 에이전트의 복사본을 저장합니다.

자세한 내용은 rlTrainingOptions 항목을 참조하십시오.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxepisodes,...
    'MaxStepsPerEpisode',maxsteps,...
    'ScoreAveragingWindowLength',5,...
    'Verbose',false,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-740,...
    'SaveAgentCriteria','EpisodeReward',...
    'SaveAgentValue',-740);

train 함수를 사용하여 에이전트를 훈련시킵니다. 이 에이전트를 훈련시키는 것은 완료하는 데 몇 시간이 소요되는 계산 집약적인 절차입니다. 이 예제를 실행하는 동안 시간을 절약하려면 doTrainingfalse로 설정하여 사전 훈련된 에이전트를 불러오십시오. 에이전트를 직접 훈련시키려면 doTrainingtrue로 설정하십시오.

doTraining = false;
if doTraining
    % Train the agent.
    trainingStats = train(agent,env,trainOpts);
else
    % Load the pretrained agent for the example.
    load('SimulinkPendulumDDPG.mat','agent')
end

DDPG 에이전트 시뮬레이션하기

훈련된 에이전트의 성능을 검증하려면 진자 환경 내에서 에이전트를 시뮬레이션하십시오. 에이전트 시뮬레이션에 대한 자세한 내용은 rlSimulationOptions 항목과 sim 항목을 참조하십시오.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

Figure Simple Pendulum Visualizer contains an axes object. The axes object contains 2 objects of type line, rectangle.

참고 항목

| |

관련 항목