Get Started with Reinforcement Learning Toolbox
Reinforcement Learning Toolbox™ provides an app, functions, and a Simulink® block for training policies using reinforcement learning algorithms, including DQN, PPO, SAC, and DDPG. You can use these policies to implement controllers and decision-making algorithms for complex applications such as resource allocation, robotics, and autonomous systems.
The toolbox lets you represent policies and value functions using deep neural networks or look-up tables and train them through interactions with environments modeled in MATLAB® or Simulink. You can evaluate the single- or multi-agent reinforcement learning algorithms provided in the toolbox or develop your own. You can experiment with hyperparameter settings, monitor training progress, and simulate trained agents either interactively through the app or programmatically. To improve training performance, simulations can be run in parallel on multiple CPUs, GPUs, computer clusters, and the cloud (with Parallel Computing Toolbox™ and MATLAB Parallel Server™).
Through the ONNX™ model format, existing policies can be imported from deep learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You can generate optimized C, C++, and CUDA® code to deploy trained policies on microcontrollers and GPUs. The toolbox includes reference examples to help you get started.
Tutorials
- Train Reinforcement Learning Agent in MDP Environment
Train a reinforcement learning agent in a generic Markov decision process environment.
- Train Reinforcement Learning Agent in Basic Grid World
Train Q-learning and SARSA agents to solve a grid world in MATLAB.
- Control Water Level in a Tank Using a DDPG Agent
Train a controller using reinforcement learning with a plant modeled in Simulink as the training environment.
- Design and Train Agent Using Reinforcement Learning Designer
Design and train a DQN agent for a cart-pole system using the Reinforcement Learning Designer app.
About Reinforcement Learning
- What Is Reinforcement Learning?
Reinforcement learning is a goal-directed computational approach where a computer learns to perform a task by interacting with an uncertain dynamic environment.
- Reinforcement Learning Workflow
Typical workflow you use to apply reinforcement learning to a problem.
- Reinforcement Learning for Control Systems Applications
You can train a reinforcement learning agent to control a plant.
- Reinforcement Learning Environments
Model environment dynamics using a MATLAB object that generates rewards and observations in response to agents actions.
Interactive Learning
Reinforcement Learning Onramp
This free, four-hour tutorial provides an interactive introduction to
reinforcement learning.