Main Content


레이다 시스템 설계, 시뮬레이션 및 테스트

레이다 엔지니어링 팀은 MATLAB®과 Simulink®를 사용하여 다기능 레이다 시스템을 설계, 분석, 시뮬레이션, 테스트합니다. Radar Toolbox를 다른 MathWorks® 제품과 함께 사용하여 개발 시간을 줄이고 설계 문제를 조기에 제거하며 공중, 지상, 해상, 자동차의 레이다 시스템 분석과 테스트를 간소화합니다.

Antenna and RF systems, signal processing, and data processing in a development environment. Create model scenarios and scenes including resource management and controls.

레이다 시스템을 위한 MathWorks 제품을 사용하여 레이다 시스템 전체 라이프사이클을 지원하는 모델을 개발할 수 있습니다.

  • 링크 버짓 분석을 수행하고, 아키텍처를 모델링하고, 시스템 설계의 상충관계를 평가합니다.

  • 지리참조 시나리오를 생성하고 레이다 신호, 탐지, 트랙을 시뮬레이션합니다.

  • 다양한 파형과 위상 배열 프론트엔드에 대한 신호 및 데이터 처리 체인을 설계합니다.

  • 프로토타이핑 및 배포를 위한 HDL 또는 C 코드를 자동 생성합니다.

도움말 항목

레이다 시스템 공학

레이다 시나리오 시뮬레이션

  • Radar Performance Analysis over Terrain (Mapping Toolbox)
    The performance of a radar system can depend on its operating environment. This example shows how radar detection performance improves as target elevation increases above the terrain.
  • Simulate and Track Targets with Terrain Occlusions (Sensor Fusion and Tracking Toolbox)
    This example shows you how to model a surveillance scenario in a mountainous region where terrain can occlude both ground and aerial vehicles from the surveillance radar.
  • Simulated Land Scenes for Synthetic Aperture Radar Image Formation (Radar Toolbox)
    Simulate of an L-band remote-sensing SAR system by generating IQ signals from a scenario containing three targets and a wooded-hills land surface and then processing the returns using a range migration focusing algorithm.

다기능 레이다

  • Adaptive Tracking of Maneuvering Targets with Managed Radar (Radar Toolbox)
    This example employs radar resource management to efficiently track multiple maneuvering targets. An interacting multiple model (IMM) filter estimates when the target is maneuvering to optimize radar revisit times.
  • Multibeam Radar for Adaptive Search and Track (Radar Toolbox)
    Use radarDataGenerator as part of a closed-loop simulation of a multifunction phased array radar (MPAR) tracking multiple maneuvering targets. At each update interval the radar requests resources from the MPAR to search for targets and revisit existing tracks.
  • Track Space Debris Using a Keplerian Motion Model (Sensor Fusion and Tracking Toolbox)
    This example shows how to model earth-centric trajectories using custom motion models within trackingScenario, how to configure a fusionRadarSensor in monostatic mode to generate synthetic detections of space debris, and how to setup a multi-object tracker to track the simulated targets.

레이다 안테나, 빔포밍, 파형

  • Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern (Phased Array System Toolbox)
    Model mutual coupling effects between array elements by using an embedded pattern technique. The example models an array two ways: (1) using the pattern of the isolated element or (2) using the embedded element pattern, and then compares both with the full-wave Method of Moments (MoM)-based solution of the array.
  • Conventional and Adaptive Beamformers (Phased Array System Toolbox)
    Apply three beamforming algorithms to narrowband array data: the phase shift beamformer, the minimum variance distortionless response (MVDR) beamformer, and the linearly constrained minimum variance (LCMV) beamformer.
  • Radar and Communications Waveform Classification Using Deep Learning (Phased Array System Toolbox)
    Classify radar and communications waveforms using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).

코드 생성 및 배포