ecmnhess
Hessian of negative log-likelihood function
Description
computes an Hessian = ecmnhess(Data,Covariance)NUMPARAMS-by-NUMPARAMS Hessian
matrix of the observed negative log-likelihood function based on current parameter
estimates.
Use ecmnhess after estimating the mean and covariance of
Data with ecmnmle.
adds optional arguments for Hessian = ecmnhess(___,InvCovar,MatrixType)InvCovar and
MatrixType.
Examples
This example shows how to compute the Hessian for the negative log-likelihood function for five years of daily total return data for 12 computer technology stocks, with six hardware and six software companies
load ecmtechdemo.matThe time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004 are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values scattered throughout the past five years.
[ECMMean, ECMCovar] = ecmnmle(Data)
ECMMean = 12×1
0.0008
0.0008
-0.0005
0.0002
0.0011
0.0038
-0.0003
-0.0000
-0.0003
-0.0000
-0.0003
0.0004
⋮
ECMCovar = 12×12
0.0012 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0003 0.0006 0.0003 0.0005 0.0006
0.0005 0.0024 0.0007 0.0006 0.0010 0.0004 0.0005 0.0003 0.0006 0.0004 0.0006 0.0012
0.0006 0.0007 0.0013 0.0007 0.0007 0.0003 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008
0.0005 0.0006 0.0007 0.0009 0.0006 0.0002 0.0005 0.0003 0.0007 0.0004 0.0005 0.0007
0.0005 0.0010 0.0007 0.0006 0.0016 0.0006 0.0005 0.0003 0.0006 0.0004 0.0007 0.0011
0.0003 0.0004 0.0003 0.0002 0.0006 0.0022 0.0001 0.0002 0.0002 0.0001 0.0003 0.0016
0.0005 0.0005 0.0006 0.0005 0.0005 0.0001 0.0009 0.0003 0.0005 0.0004 0.0005 0.0006
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0003 0.0004 0.0004
0.0006 0.0006 0.0008 0.0007 0.0006 0.0002 0.0005 0.0004 0.0011 0.0005 0.0007 0.0007
0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0004 0.0003 0.0005 0.0006 0.0004 0.0005
0.0005 0.0006 0.0008 0.0005 0.0007 0.0003 0.0005 0.0004 0.0007 0.0004 0.0013 0.0007
0.0006 0.0012 0.0008 0.0007 0.0011 0.0016 0.0006 0.0004 0.0007 0.0005 0.0007 0.0020
⋮
To evaluate the negative log-likelihood function for ecmnmle, use ecmnhess based on the current maximum likelihood parameter estimates for ECMCovar.
Hessian = ecmnhess(Data,ECMCovar)
Hessian = 90×90
107 ×
0.0001 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0001 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 0.0002 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 0.0003 -0.0000 0.0000 -0.0000 -0.0000 -0.0001 -0.0001 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 -0.0000 0.0001 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0002 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0004 -0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 -0.0001 0.0000 0.0000 -0.0000 -0.0000 0.0002 -0.0001 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 -0.0000 -0.0000 -0.0001 -0.0000 0.0000 -0.0000 -0.0000 -0.0001 0.0004 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0001 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0756 0.0014 0.0000 -0.0036 -0.0000 0.0000 -0.0392 -0.0004 0.0009 0.0051 -0.0086 -0.0001 0.0002 0.0022 0.0002 -0.0004 -0.0000 0.0000 0.0001 0.0000 0.0000 -0.0189 -0.0002 0.0005 0.0049 0.0011 0.0001 0.0012 -0.0142 -0.0001 0.0003 0.0037 0.0008 0.0000 0.0018 0.0007 -0.0315 -0.0003
0 0 0 0 0 0 0 0 0 0 0 0 0.0014 0.0828 0.0008 -0.0115 -0.0021 0.0003 -0.0034 -0.0215 0.0030 0.0008 -0.0231 -0.0049 0.0012 0.0061 0.0013 0.0088 -0.0002 -0.0002 -0.0023 -0.0004 -0.0002 -0.0047 -0.0104 0.0015 0.0015 0.0031 -0.0011 0.0006 0.0118 -0.0076 0.0008 -0.0028 0.0015 -0.0008 -0.0011 -0.0011 -0.0036 -0.0173
0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0.0008 0.0229 -0.0001 -0.0063 0.0004 -0.0000 -0.0016 0.0002 0.0001 -0.0002 -0.0127 0.0018 0.0004 0.0018 0.0000 0.0058 -0.0007 0.0003 -0.0016 0.0019 -0.0001 -0.0023 0.0003 0.0002 0.0006 0.0004 0.0001 0.0001 0.0064 -0.0009 -0.0003 -0.0018 0.0000 -0.0005 0.0005 -0.0000 -0.0017
⋮
Input Arguments
Data, specified as an
NUMSAMPLES-by-NUMSERIES matrix
with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector. Missing values are
indicated by NaNs.
Data Types: double
Maximum likelihood parameter estimates for the covariance of the
Data using the ECM algorithm, specified as a
NUMSERIES-by-NUMSERIES
matrix.
(Optional) Inverse of covariance matrix, specified as a matrix using
inv
as:
inv(Covariance)
Data Types: double
(Optional) Matrix format, specified as a character vector with a value of:
'full'— Computes the full Hessian matrix.'meanonly'— Computes only the components of the Hessian matrix associated with the mean.
Data Types: char
Output Arguments
Hessian matrix, returned as an
NUMPARAMSNUMPARAMS matrix of the
observed log-likelihood function based on current parameter estimates, where
NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2 if the
MatrixFormat = 'full'. If the
MatrixFormat = 'meanonly', then
the NUMPARAMS = NUMSERIES.
More About
The Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued function.
The Hessian matrix is a key concept in optimization, particularly in the context of multivariable calculus, and is used to study the local curvature of functions. The Hessian matrix provides important information about the behavior of functions near critical points, which are points where the gradient (first derivative) is zero.
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)