ecmnfish
Fisher information matrix
Description
computes an Fisher = ecmnfish(Data,Covariance)NUMPARAMS-by-NUMPARAMS Fisher information
matrix based on the current maximum likelihood parameter estimates.
Use ecmnfish after estimating the mean and covariance of
Data with ecmnmle.
adds optional arguments for Fisher = ecmnfish(___,InvCovar,MatrixType)InvCovar and
MatrixType.
Examples
This example shows how to compute the Fisher information matrix based on parameter estimates for Data for five years of daily total returns for 12 computer technology stocks, with six hardware and six software companies
load ecmtechdemo.matThe time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004 are missing and represented as NaNs. Also, Amazon (AMZN) had a few days with missing values scattered throughout the past five years.
[ECMMean, ECMCovar] = ecmnmle(Data)
ECMMean = 12×1
0.0008
0.0008
-0.0005
0.0002
0.0011
0.0038
-0.0003
-0.0000
-0.0003
-0.0000
-0.0003
0.0004
⋮
ECMCovar = 12×12
0.0012 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0003 0.0006 0.0003 0.0005 0.0006
0.0005 0.0024 0.0007 0.0006 0.0010 0.0004 0.0005 0.0003 0.0006 0.0004 0.0006 0.0012
0.0006 0.0007 0.0013 0.0007 0.0007 0.0003 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008
0.0005 0.0006 0.0007 0.0009 0.0006 0.0002 0.0005 0.0003 0.0007 0.0004 0.0005 0.0007
0.0005 0.0010 0.0007 0.0006 0.0016 0.0006 0.0005 0.0003 0.0006 0.0004 0.0007 0.0011
0.0003 0.0004 0.0003 0.0002 0.0006 0.0022 0.0001 0.0002 0.0002 0.0001 0.0003 0.0016
0.0005 0.0005 0.0006 0.0005 0.0005 0.0001 0.0009 0.0003 0.0005 0.0004 0.0005 0.0006
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0003 0.0004 0.0004
0.0006 0.0006 0.0008 0.0007 0.0006 0.0002 0.0005 0.0004 0.0011 0.0005 0.0007 0.0007
0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0004 0.0003 0.0005 0.0006 0.0004 0.0005
0.0005 0.0006 0.0008 0.0005 0.0007 0.0003 0.0005 0.0004 0.0007 0.0004 0.0013 0.0007
0.0006 0.0012 0.0008 0.0007 0.0011 0.0016 0.0006 0.0004 0.0007 0.0005 0.0007 0.0020
⋮
To evaluate the negative log-likelihood function for ecmnmle, use ecmnfish based on the current maximum likelihood parameter estimates for ECMCovar.
Fisher = ecmnfish(Data,ECMCovar)
Fisher = 90×90
107 ×
0.0001 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0001 -0.0000 0.0000 -0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 0.0002 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 0.0003 -0.0000 0.0000 -0.0000 -0.0000 -0.0001 -0.0001 0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0000 -0.0000 -0.0000 0.0001 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0001 -0.0000 0.0000 -0.0000 0.0002 0.0000 -0.0000 0.0000 0.0001 0.0000 -0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0002 -0.0001 -0.0000 0.0000 -0.0000 -0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0001 0.0004 -0.0000 -0.0001 -0.0000 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 -0.0001 0.0000 0.0000 -0.0000 -0.0000 0.0002 -0.0001 -0.0000 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 -0.0000 -0.0001 -0.0000 0.0001 0.0000 -0.0001 -0.0001 0.0004 -0.0000 -0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0001 -0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -0.0001 -0.0000 -0.0000 -0.0000 -0.0002 -0.0001 0.0000 -0.0000 -0.0001 -0.0000 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.0756 0.0007 0.0000 -0.0036 -0.0000 0.0000 -0.0395 -0.0002 0.0009 0.0052 -0.0084 -0.0000 0.0002 0.0022 0.0002 -0.0030 -0.0000 0.0001 0.0008 0.0002 0.0000 -0.0194 -0.0001 0.0005 0.0051 0.0011 0.0004 0.0012 -0.0137 -0.0001 0.0003 0.0036 0.0008 0.0003 0.0018 0.0006 -0.0317 -0.0002
0 0 0 0 0 0 0 0 0 0 0 0 0.0007 0.0990 0.0005 -0.0122 -0.0024 0.0003 0.0045 -0.0258 0.0031 -0.0012 -0.0267 -0.0057 0.0013 0.0067 0.0015 0.0665 -0.0017 -0.0013 -0.0175 -0.0032 -0.0013 0.0069 -0.0127 0.0014 -0.0024 0.0030 -0.0087 -0.0009 0.0008 -0.0089 0.0011 -0.0006 0.0024 -0.0060 -0.0007 -0.0001 0.0015 -0.0208
0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0.0005 0.0324 -0.0001 -0.0080 0.0005 0.0000 0.0031 -0.0004 0.0001 -0.0001 -0.0175 0.0021 -0.0008 0.0024 0.0003 0.0435 -0.0054 0.0021 -0.0117 0.0146 0.0000 0.0046 -0.0006 0.0002 -0.0012 0.0031 0.0002 0.0000 0.0005 -0.0001 0.0000 -0.0001 0.0004 0.0000 0.0000 0.0000 0.0011
⋮
Input Arguments
Data, specified as an NUMSAMPLES-by-NUMSERIES
matrix with NUMSAMPLES samples of a
NUMSERIES-dimensional random vector. Missing values are indicated by
NaNs.
Data Types: double
Maximum likelihood parameter estimates for the covariance of the
Data using the ECM algorithm, specified as a
NUMSERIES-by-NUMSERIES matrix.
(Optional) Inverse of covariance matrix, specified as a matrix using inv
as:
inv(Covariance)
Data Types: double
(Optional) Matrix format, specified as a character vector with a value of:
'full'— Computes the full Fisher information matrix.'meanonly'— Computes only the components of the Fisher information matrix associated with the mean.
Data Types: char
Output Arguments
Fisher information matrix, returned as an
NUMPARAMSNUMPARAMS matrix based on current
parameter estimates, where NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2
if the MatrixFormat = 'full'. If the
MatrixFormat = 'meanonly', then the
NUMPARAMS = NUMSERIES.
More About
The Fisher information matrix is a key concept in statistics and information theory that measures the amount of information that an observable random variable carries about an unknown parameter upon which the probability of the random variable depends.
The Fisher information matrix is used to evaluate the efficiency of estimators and to derive confidence intervals.
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)