Main Content

Adaptive Noise Cancellation Using RLS Adaptive Filtering

This example shows how to use an RLS filter to extract useful information from a noisy signal. The information bearing signal is a sine wave that is corrupted by additive white gaussian noise.

The adaptive noise cancellation system assumes the use of two microphones. A primary microphone picks up the noisy input signal, while a secondary microphone receives noise that is uncorrelated to the information bearing signal, but is correlated to the noise picked up by the primary microphone.

Note: This example is equivalent to the Simulink® model 'rlsdemo' provided.

The model illustrates the ability of the Adaptive RLS filter to extract useful information from a noisy signal.

priv_drawrlsdemo
axis off

The information bearing signal is a sine wave of 0.055 cycles/sample.

signal = sin(2*pi*0.055*(0:1000-1)');
signalSource = dsp.SignalSource(signal,'SamplesPerFrame',100,...
    'SignalEndAction','Cyclic repetition');

plot(0:199,signal(1:200));
grid; axis([0 200 -2 2]);
title('The information bearing signal');

Figure contains an axes object. The axes object with title The information bearing signal contains an object of type line.

The noise picked up by the secondary microphone is the input for the RLS adaptive filter. The noise that corrupts the sine wave is a lowpass filtered version of (correlated to) this noise. The sum of the filtered noise and the information bearing signal is the desired signal for the adaptive filter.

nvar  = 1.0;                  % Noise variance
noise = randn(1000,1)*nvar;   % White noise
noiseSource = dsp.SignalSource(noise,'SamplesPerFrame',100,...
    'SignalEndAction','Cyclic repetition');

plot(0:999,noise);
title('Noise picked up by the secondary microphone');
grid; axis([0 1000 -4 4]);

Figure contains an axes object. The axes object with title Noise picked up by the secondary microphone contains an object of type line.

The noise corrupting the information bearing signal is a filtered version of 'noise'. Initialize the filter that operates on the noise.

lp = dsp.FIRFilter('Numerator',fir1(31,0.5));% Low pass FIR filter

Set and initialize RLS adaptive filter parameters and values:

M      = 32;                 % Filter order
delta  = 0.1;                % Initial input covariance estimate
P0     = (1/delta)*eye(M,M); % Initial setting for the P matrix
rlsfilt = dsp.RLSFilter(M,'InitialInverseCovariance',P0);

Running the RLS adaptive filter for 1000 iterations. As the adaptive filter converges, the filtered noise should be completely subtracted from the "signal + noise". Also the error, 'e', should contain only the original signal.

scope = timescope('TimeSpan',1000,'YLimits',[-2,2], ...
	                  'TimeSpanOverrunAction','Scroll');
for k = 1:10
    n = noiseSource(); % Noise
    s = signalSource();
    d = lp(n) + s;
    [y,e]  = rlsfilt(n,d);
    scope([s,e]);
end
release(scope);

The plot shows the convergence of the adaptive filter response to the response of the FIR filter.

H  = abs(freqz(rlsfilt.Coefficients,1,64));
H1 = abs(freqz(lp.Numerator,1,64));

wf = linspace(0,1,64);

plot(wf,H,wf,H1);
xlabel('Normalized Frequency  (\times\pi rad/sample)');
ylabel('Magnitude');
legend('Adaptive Filter Response','Required Filter Response');
grid;
axis([0 1 0 2]);

Figure contains an axes object. The axes object with xlabel Normalized Frequency ( times pi blank r a d / s a m p l e ), ylabel Magnitude contains 2 objects of type line. These objects represent Adaptive Filter Response, Required Filter Response.

References

[1] S.Haykin, "Adaptive Filter Theory", 3rd Edition, Prentice Hall, N.J., 1996.