ROILabelData
Description
The ROILabelData
object stores ground truth data for region of
interest (ROI) label definitions for each signal in a groundTruthMultisignal
object.
Creation
When you export a groundTruthMultisignal
object from a Ground
Truth Labeler app session, the ROILabelData
property of the
exported object stores the ROI labels as an ROILabelData
object. To create an
ROILabelData
object programmatically, use the
vision.labeler.labeldata.ROILabelData
function (described here).
Description
creates an object containing ROI label data for multiple signals. The created object,
roiLabelData
= vision.labeler.labeldata.ROILabelData(signalNames
,labelData
)roiLabelData
, contains properties with the signal names listed in
signalNames
. These properties store the corresponding ROI label
data specified by labelData
.
Input Arguments
signalNames
— Signal names
string array
Signal names, specified as a string array. Specify the names of all signals
present in the groundTruthMultisignal
object you are creating. You
can get the signal names from an existing groundTruthMultisignal
object by accessing the DataSource
property of that object. Use
this command and replace gTruth
with the name of your
groundTruthMultisignal
object variable.
gTruth.DataSource.SignalName
In an exported groundTruthMultisignal
object, the
ROILabelData
object contains a label data property for each signal,
even if some signals do not have ROI label data.
The properties of the created ROILabelData
object have the names
specified by signalNames
.
Example: ["video_01_city_c2s_fcw_10s"
"lidarSequence"]
labelData
— ROI label data for each signal
cell array of timetables
ROI label data for each signal, specified as a cell array of timetables. Each
timetable in the cell array contains data for the signal in the corresponding position
of the signalNames
input. The ROILabelData
object stores each timetable in a property that has the same name as that
signal.
The timetable format for each signal depends on data from the
groundTruthMultisignal
object that you exported or are
creating.
Each timetable contains one column per label definition stored in the
LabelDefinitions
property of the
groundTruthMultisignal
object. Label definitions that the signal
type does not support are excluded. For example, suppose you define a
Line
ROI label named 'lane'
. The timetable for
a lidar point cloud signal does not include a lane
column, because
these signals do not support Line
ROI labels. In the
DataSource
property of the
groundTruthMultisignal
object, the SignalType
property of each data source lists the valid signal types.
The height of the timetable is defined by the number of timestamps in the signal.
In the DataSource
property of the
groundTruthMultisignal
object, the Timestamp
property of each data source lists the signal timestamps.
For each label definition, all ROI labels marked at that timestamps are combined
into a single cell in the table. Consider the ROI label data for a video signal stored
in a groundTruthMultisignal
object, gTruth
. At
each timestamp, car
contains three labels, truck
contains one label, and lane
contains two labels.
gTruth.ROILabelData.video_01_city_c2s_fcw_10s
ans = 5×4 timetable Time car truck lane _________ ____________ ____________ ____________ 0 sec {3×4 double} {1×4 double} {2×1 cell } 0.05 sec {3×4 double} {1×4 double} {2×1 cell } 0.1 sec {3×4 double} {1×4 double} {2×1 cell } 0.15 sec {3×4 double} {1×4 double} {2×1 cell } 0.2 sec {3×4 double} {1×4 double} {2×1 cell }
The storage format for ROI label data depends on the label type.
Label Type | Storage Format for Labels at Each Timestamp |
---|---|
labelType.Rectangle |
|
labelType.RotatedRectangle |
For one or more rotated rectangles, specify in spatial coordinates as an M-by-5 numeric matrix, where each row specifies a rotated rectangle of the form [xctr yctr w h yaw].
|
|
The figure shows how these values determine the position of a cuboid. |
|
The figure shows how these values determine the position of a cuboid. |
labelType.Line |
|
labelType.PixelLabel | Label data for all pixel label definitions is stored in a
single M-by-1 |
labelType.Polygon |
|
labelType.Custom | Labels are stored exactly as they are specified in the timetable.
If you import a |
If the ROI label data includes sublabels or attributes, then the labels at each timestamp must be specified as structures instead. The structure includes these fields.
Label Structure Field | Description | ||||||
---|---|---|---|---|---|---|---|
Position | Positions of the parent labels at the given timestamp The format of | ||||||
AttributeName1,...,AttributeNameN | Attributes of the parent labels Each defined sublabel
has its own field, where the name of the field corresponds to the
attribute name. The attribute value is a character vector for a
| ||||||
SublabelName1,...,SublabelNameN | Sublabels of the parent labels Each defined sublabel has its own field, where the name of the field corresponds to the sublabel name. The value of each sublabel field is a structure containing the data for all marked sublabels with that name at the given timestamp. This table describes the format of this sublabel structure.
|
Properties
SignalName1,...,SignalNameN
— ROI label data for each signal (as separate properties)
timetables
ROI label data, specified as timetables. The ROILabelData
object
contains one property per signal, where each property contains a timetable of ROI label
data corresponding to that signal.
When exporting an ROILabelData
object from a Ground Truth
Labeler app session, the property names correspond to the signal names stored in
the DataSource
property of the exported
groundTruthMultisignal
object.
When creating an ROILabelData
object programmatically, the
signalNames
and labelData
input arguments
define the property names and values of the created object.
Suppose you want to create a groundTruthMultisignal
object
containing a video signal and a lidar point cloud sequence signal. Specify the signals
in a string array, signalNames
.
signalNames = ["video_01_city_c2s_fcw_10s" "lidarSequence"];
Store the video ROI labels, videoData
, and lidar point cloud
sequence ROI labels, lidarData
, in a cell array of timetables,
labelData
. Each timetable contains the data for the corresponding
signal in signalNames
.
labelData = {videoData,lidarData}
1×2 cell array {204×2 timetable} {34×1 timetable}
The ROILabelData
object, roiData
, stores this
data in the property with the corresponding signal name. You can specify
roiData
in the ROILabelData
property of a
groundTruthMultisignal
object.
roiData = vision.labeler.labeldata.ROILabelData(signalNames,labelData)
roiData = ROILabelData with properties: video_01_city_c2s_fcw_10s: [204×2 timetable] lidarSequence: [34×1 timetable]
Examples
Create Ground Truth from Multiple Signals
Create ground truth data for a video signal and a lidar point cloud sequence signal that captures the same driving scene. Specify the signal sources, label definitions, and ROI and scene label data.
Create the video data source from an MP4 file.
sourceName = '01_city_c2s_fcw_10s.mp4';
sourceParams = [];
vidSource = vision.labeler.loading.VideoSource;
vidSource.loadSource(sourceName,sourceParams);
Create the point cloud sequence source from a folder of point cloud data (PCD) files.
pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence'); addpath(pcSeqFolder) load timestamps.mat rmpath(pcSeqFolder) lidarSourceData = load(fullfile(pcSeqFolder,'timestamps.mat')); sourceName = pcSeqFolder; sourceParams = struct; sourceParams.Timestamps = timestamps; pcseqSource = vision.labeler.loading.PointCloudSequenceSource; pcseqSource.loadSource(sourceName,sourceParams);
Combine the signal sources into an array.
dataSource = [vidSource pcseqSource]
dataSource = 1x2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties: SourceName SourceParams SignalName SignalType Timestamp NumSignals
Create a table of label definitions for the ground truth data by using a labelDefinitionCreatorMultisignal
object.
The
Car
label definition appears twice. Even thoughCar
is defined as a rectangle, you can draw rectangles only for image signals, such as videos. ThelabelDefinitionCreatorMultisignal
object creates an additional row for lidar point cloud signals. In these signal types, you can drawCar
labels as cuboids only.The label definitions have no descriptions and no assigned colors, so the
Description
andLabelColor
columns are empty.The label definitions have no assigned groups, so for all label definitions, the corresponding cell in the
Group
column is set to'None'
.Road
is a pixel label definition, so the table includes aPixelLabelID
column.No label definitions have sublabels or attributes, so the table does not include a
Hierarchy
column for storing such information.
ldc = labelDefinitionCreatorMultisignal; addLabel(ldc,'Car','Rectangle'); addLabel(ldc,'Truck','ProjectedCuboid'); addLabel(ldc,'Lane','Line'); addLabel(ldc,'Road','PixelLabel'); addLabel(ldc,'Sunny','Scene'); labelDefs = create(ldc)
labelDefs = 7x7 table Name SignalType LabelType Group Description LabelColor PixelLabelID _________ __________ _______________ ________ ___________ __________ ____________ {'Car' } Image Rectangle {'None'} {' '} {0x0 char} {0x0 double} {'Car' } PointCloud Cuboid {'None'} {' '} {0x0 char} {0x0 double} {'Truck'} Image ProjectedCuboid {'None'} {' '} {0x0 char} {0x0 double} {'Lane' } Image Line {'None'} {' '} {0x0 char} {0x0 double} {'Lane' } PointCloud Line {'None'} {' '} {0x0 char} {0x0 double} {'Road' } Image PixelLabel {'None'} {' '} {0x0 char} {[ 1]} {'Sunny'} Time Scene {'None'} {' '} {0x0 char} {0x0 double}
Create ROI label data for the first frame of the video.
numVideoFrames = numel(vidSource.Timestamp{1}); carData = cell(numVideoFrames,1); laneData = cell(numVideoFrames,1); truckData = cell(numVideoFrames,1); carData{1} = [304 212 37 33]; laneData{1} = [70 458; 311 261]; truckData{1} = [309,215,33,24,330,211,33,24]; videoData = timetable(vidSource.Timestamp{1},carData,laneData, ... 'VariableNames',{'Car','Lane'});
Create ROI label data for the first point cloud in the sequence.
numPCFrames = numel(pcseqSource.Timestamp{1}); carData = cell(numPCFrames, 1); carData{1} = [27.35 18.32 -0.11 4.25 4.75 3.45 0 0 0]; lidarData = timetable(pcseqSource.Timestamp{1},carData,'VariableNames',{'Car'});
Combine the ROI label data for both sources.
signalNames = [dataSource.SignalName]; roiData = vision.labeler.labeldata.ROILabelData(signalNames,{videoData,lidarData})
roiData = ROILabelData with properties: video_01_city_c2s_fcw_10s: [204x2 timetable] lidarSequence: [34x1 timetable]
Create scene label data for the first 10 seconds of the driving scene.
sunnyData = seconds([0 10]);
labelNames = ["Sunny"];
sceneData = vision.labeler.labeldata.SceneLabelData(labelNames,{sunnyData})
sceneData = SceneLabelData with properties: Sunny: [0 sec 10 sec]
Create a ground truth object from the signal sources, label definitions, and ROI and scene label data. You can import this object into the Ground Truth Labeler app for manual labeling or to run a labeling automation algorithm on it. You can also extract training data from this object for deep learning models by using the gatherLabelData
function.
gTruth = groundTruthMultisignal(dataSource,labelDefs,roiData,sceneData)
gTruth = groundTruthMultisignal with properties: DataSource: [1x2 vision.labeler.loading.MultiSignalSource] LabelDefinitions: [7x7 table] ROILabelData: [1x1 vision.labeler.labeldata.ROILabelData] SceneLabelData: [1x1 vision.labeler.labeldata.SceneLabelData]
Version History
Introduced in R2020a
MATLAB 명령
다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.
명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)