라이다 처리
Deep Learning Toolbox™를 Lidar Toolbox™와 함께 사용하여 라이다 포인트 클라우드 데이터 처리에 딥러닝 알고리즘을 적용합니다.
앱
라이다 레이블 지정기 | Label ground truth data in lidar point clouds |
함수
pointPillarsObjectDetector | Create PointPillars object detector (R2021b 이후) |
trainPointPillarsObjectDetector | Train PointPillars object detector (R2021b 이후) |
detect | Detect objects using PointPillars object detector (R2021b 이후) |
squeezesegv2Layers | (Not recommended) Create SqueezeSegV2 segmentation network for organized lidar point cloud |
pointnetplusLayers | (Not recommended) Create PointNet++ segmentation network (R2021b 이후) |
추천 예제
Aerial Lidar Semantic Segmentation Using RandLANet Deep Learning
Train a RandLANet deep learning network to perform semantic segmentation on aerial lidar data.
(Lidar Toolbox)
Lidar Object Detection Using Complex-YOLO v4 Network
Detect objects in point clouds using you only look once version 4 (YOLO v4) deep learning network. In this example, you will
Code Generation for Lidar Object Detection Using SqueezeSegV2 Network
Generate CUDA® MEX code for a lidar object detection network. In the example, you first segment the point cloud with a pretrained network, then cluster the points and fit 3-D bounding boxes to each cluster. Finally, you generate MEX code for the network.
Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network
Train a PointSeg semantic segmentation network on 3-D organized lidar point cloud data.
Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network
Train a SqueezeSegV2 semantic segmentation network on 3-D organized lidar point cloud data.
Code Generation for Lidar Point Cloud Segmentation Network
Generate CUDA® MEX code for a deep learning network for lidar semantic segmentation. This example uses a pretrained SqueezeSegV2 [1] network that can segment organized lidar point clouds belonging to three classes (background, car, and truck). For information on the training procedure for the network, see Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network (Lidar Toolbox). The generated MEX code takes a point cloud as input and performs prediction on the point cloud by using the DAGNetwork
object for the SqueezeSegV2 network.
Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
Train a PointNet++ deep learning network to perform semantic segmentation on aerial lidar data.
Code Generation for Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
Generate CUDA® MEX code for a PointNet++ network for lidar semantic segmentation.
Lidar 3-D Object Detection Using PointPillars Deep Learning
Detect objects in lidar using PointPillars deep learning network [1]. In this example, you
PointPillars 딥러닝을 사용하여 라이다 객체 검출을 위한 코드 생성하기
이 예제에서는 PointPillars 객체 검출기에 대한 CUDA® MEX를 생성하는 방법을 보여줍니다. 자세한 내용은 Lidar Toolbox™의 PointPillars 딥러닝을 사용한 라이다 3차원 객체 검출 (Lidar Toolbox) 예제를 참조하십시오.
(Lidar Toolbox)
Data Augmentations for Lidar Object Detection Using Deep Learning
Perform typical data augmentation techniques for 3-D object detection workflows with lidar data.
(Lidar Toolbox)
Automate Ground Truth Labeling for Vehicle Detection Using PointPillars
Automate vehicle detections in a point cloud using a pretrained pointPillarsObjectDetector
(Lidar Toolbox) in the Lidar Labeler (Lidar Toolbox). The example uses the AutomationAlgorithm
interface in the Lidar Labeler app to automate labeling.
(Lidar Toolbox)
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)