Chapter 4
MATLAB for Machine Learning and Deep Learning
There are very few hard and fast rules when it comes to choosing the best algorithm for your project. Most algorithms are chosen through a process of trial and error to see what works best in any given situation.
Whether you end up with a traditional machine learning algorithm or a deep learning algorithm, MATLAB provides tools and support to get started with these techniques quickly.
MATLAB offers apps and functions that help engineers and researchers get value out of machine learning quickly, including:
- Point-and-click apps for training and comparing models
- Support for advanced signal processing and feature extraction techniques
- Popular classification, regression, and clustering algorithms for supervised and unsupervised learning
- Faster execution than open source on most statistical and machine learning computations
Interested in trying out deep learning? MATLAB can help with:
- Pretrained models like Caffe and TensorFlow-Keras™
- Optimized CUDA code from MATLAB to be compiled and executed on NVIDIA GPUs without specialized programming
- Apps to create, modify, and analyze complex deep neural network architectures
- ONNX™ model importer and exporters supporting frameworks like PyTorch and Apache MxNet™
Recommended Next Steps
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)