MathWorks - Mobile View
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
MathWorks
  • 제품
  • 솔루션
  • 아카데미아
  • 지원
  • 커뮤니티
  • 이벤트
  • MATLAB 다운로드
  • MathWorks 계정에 로그인합니다.MathWorks 계정에 로그인합니다.
  • Access your MathWorks Account
    • 내 계정
    • 나의 커뮤니티 프로필
    • 라이선스를 계정에 연결
    • 로그아웃

비디오 및 웨비나

  • MathWorks
  • 비디오
  • 비디오 홈
  • 검색
  • 비디오 홈
  • 검색
  • 영업 상담
  • 평가판 신청
  Register to watch video
  • Description
  • Related Resources

How to Train Your Robot (with Deep Reinforcement Learning)

Lucas García, Mathworks

Artificial Intelligence (AI) is transforming automated systems, from voice assistants and chatbots, to self-driving cars and robots. AI systems have the capability to learn and adapt as they incorporate experiences, in order to enhance their predictive abilities.

Deep learning is a subset of machine learning, in which artificial neural networks, algorithms inspired by the human brain, learn from large amounts of data. Deep learning has disrupted the world of machine learning, allowing deep neural networks to achieve near or better accuracy than humans in a variety of tasks such as image classification, speech and hand writing recognition, and autonomous driving.

Reinforcement learning is revolutionizing the applications of deep learning –from playing and beating the best human players at video games to training robots to accomplish complex, technical tasks. Reinforcement learning involves learning what to do (mapping situations to actions) to maximize a numerical reward signal. It has successfully trained computer programs to play games (such as Go and StarCraft II) better than the world’s best human players. These programs find the best action to take in games with large state and action spaces, imperfect world information, and uncertainty around how short-term actions pay off in the long run. Engineers and scientists face the same types of challenges when designing real systems like controllers. Can reinforcement learning also help solve complex control problems like making a robot walk or driving an autonomous car?

In this talk, we aim to answer this question by explaining what reinforcement learning is in the context of traditional control problems, showing how to generate simulation data, setting up and solving the reinforcement learning problem, and allowing a virtual robot to learn complex tasks, like walking, using deep reinforcement learning.

Recorded at Big Things Conference 2019.

Related Products

  • Reinforcement Learning Toolbox
  • Deep Learning Toolbox
  • GPU Coder
  • MATLAB
  • Simulink

Learn More

Download code
Related Information
Get Started with Reinforcement Learning Onramp

Feedback

Featured Product

Reinforcement Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

36:42
Simulink: Tips and Tricks

Related Videos:

45:02
Mobile Robot Simulation for Collision Avoidance with...
3:29
German Aerospace Center (DLR) Robotics and Mechatronics...
20:44
Renault Model-Based Design Power Train Control Development...
30:58
Rapid Algorithm Development for Planning and Control of an...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 영업 상담
  • 평가판 신청

제품 소개

  • MATLAB
  • Simulink
  • 학생용 소프트웨어
  • 하드웨어 지원
  • File Exchange

다운로드 및 구매

  • 다운로드
  • 평가판 신청
  • 영업 상담
  • 가격 및 라이선스
  • MathWorks 스토어

사용 방법

  • 문서
  • 튜토리얼
  • 예제
  • 비디오 및 웨비나
  • 교육

지원

  • 설치 도움말
  • 사용자 커뮤니티
  • 컨설팅
  • 라이선스 센터
  • 지원 문의

회사 정보

  • 채용
  • 뉴스 룸
  • 사회적 미션
  • 영업 상담
  • 회사 정보

MathWorks

Accelerating the pace of engineering and science

MathWorks는 엔지니어와 과학자들을 위한 테크니컬 컴퓨팅 소프트웨어 분야의 선도적인 개발업체입니다.

활용 분야 …

  • Select a Web Site United States
  • 특허
  • 등록 상표
  • 정보 취급 방침
  • 불법 복제 방지
  • 매스웍스코리아 유한회사
  • 주소: 서울시 강남구 삼성동 테헤란로 521 파르나스타워 14층
  • 전화번호: 02-6006-5100
  • 대표자 : 이종민
  • 사업자 등록번호 : 120-86-60062

© 1994-2021 The MathWorks, Inc.

  • Naver
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • RSS

대화에 참여하기