Deep Learning For Time Series Data

The examples showcase two ways of using deep learning for classifying time-series data, i.e. ECG data.
다운로드 수: 1.1K
업데이트 날짜: 2020/11/23

The examples showcase two ways of using deep learning for classifying time-series data, i.e. ECG data. The first way is using continuous wavelet transform and transfer learning, whereas the second way is using Wavelet Scattering and LSTMs. The explanations of the code are in Chinese. The used data set can be download on:https://github.com/mathworks/physionet_ECG_data/

The video series (in Chinese) on this topic can be found as follows:
https://www.mathworks.com/videos/series/deep-learning-for-time-series-data.html

인용 양식

MathWorks Student Competitions Team (2026). Deep Learning For Time Series Data (https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2), GitHub. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2020a
R2020a에서 R2020b까지의 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
버전 게시됨 릴리스 정보
1.0.2

See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2

1.0.1

See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.1

1.0

이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.