Jaya: A simple and new optimization algorithm

버전 1.0.0 (1.76 KB) 작성자: iraj faraji
A simple yet powerful optimization algorithm is proposed in this paper for solving the constrained and unconstrained optimization problems.
다운로드 수: 2.1K
업데이트 날짜: 2020/1/23

라이선스 보기

All the evolutionary and swarm intelligence based algorithms are probabilistic algorithms and require common controlling parameters like population size, number of generations, elite size, etc. Besides the common control parameters, different algorithms require their own algorithm-specific control parameters. For example, GA uses mutation probability, crossover probability, selection operator; PSO uses inertia weight, social and cognitive parameters; ABC uses number of onlooker bees, employed bees, scout bees and limit; HS algorithm uses harmony memory consideration rate, pitch adjusting rate, and the number of improvisations. Similarly, the other algorithms such as ES, EP, DE, SFL, ACO, FF, CSO, AIA, GSA, BBO, FPA, ALO, IWO, etc. need the tuning of respective algorithm-specific parameters. The proper tuning of the algorithm-specific parameters is a very crucial factor which affects the performance of the above mentioned algorithms. The improper tuning of algorithm-specific parameters either increases the computational effort or yields the local optimal solution. Considering this fact, Rao et al. (2011) introduced the teaching-learning-based optimization (TLBO) algorithm which does not require any algorithm-specific parameters. The TLBO algorithm requires only common controlling parameters like population size and number of generations for its working. The TLBO algorithm has gained wide acceptance among the optimization researchers.

인용 양식

iraj faraji (2024). Jaya: A simple and new optimization algorithm (https://www.mathworks.com/matlabcentral/fileexchange/74004-jaya-a-simple-and-new-optimization-algorithm), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2019b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Particle Swarm에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0