Common Spatial Patterns (CSP)

A vectorized, quick and simple implementation of the CSP algorithm.
다운로드 수: 1.3K
업데이트 날짜: 2019/7/19

라이선스 보기

The function 'csp' performs a bearable implementation of the Common Spatial Patterns (CSP) algorithm, which consists of a binary data-driven supervised data projection of a signal by maximizing the variance of the positive class while minimizing the variance of the negative one.

Input parameters:
- X1 and X2: Signals for the positive and negative class, respectively, whose dimensions must be [classes x samples].

Output parameters:
- W: Filter matrix (mixing matrix), whose columns are spatial filters.
- lambda: Eigenvalues of each filter.
- A: Demixing matrix.

Once the W is trained, the projection of new data X must be computed as:
X_csp = W'*X;

An example of use is included in the 'csp_example.m' file.

인용 양식

Víctor Martínez-Cagigal (2026). Common Spatial Patterns (CSP) (https://kr.mathworks.com/matlabcentral/fileexchange/72204-common-spatial-patterns-csp), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2018a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Discrete Multiresolution Analysis에 대해 자세히 알아보기
버전 게시됨 릴리스 정보
1.0.0