Binary Particle Swarm Optimization for Feature Selection

버전 1.3 (61.2 KB) 작성자: Jingwei Too
Simple algorithm shows how binary particle swarm optimization (BPSO) used in feature selection problem.
다운로드 수: 1.9K
업데이트 날짜: 2020/12/19

Simple binary particle swarm optimization (BPSO) for feature selection tasks, which can select the potential features to improve the classification accuracy.

The < Main.m file > demos an example on how to use BPSO with classification error rate (computed by KNN) as the fitness function for feature selection problem using benchmark data-set.

**********************************************************************************************************************************

인용 양식

Too, Jingwei, et al. “A New Co-Evolution Binary Particle Swarm Optimization with Multiple Inertia Weight Strategy for Feature Selection.” Informatics, vol. 6, no. 2, MDPI AG, May 2019, p. 21, doi:10.3390/informatics6020021.

양식 더 보기

Too, Jingwei, et al. “EMG Feature Selection and Classification Using a Pbest-Guide Binary Particle Swarm Optimization.” Computation, vol. 7, no. 1, MDPI AG, Feb. 2019, p. 12, doi:10.3390/computation7010012.

양식 더 보기
MATLAB 릴리스 호환 정보
개발 환경: R2018a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Particle Swarm에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.3

See release notes for this release on GitHub: https://github.com/JingweiToo/Binary-Particle-Swarm-Optimization-for-Feature-Selection/releases/tag/1.3

1.2

Improve code for the fitness function

1.1.0

change to hold-out

1.0.4

-

1.0.3

Changes Vmin=-Vmax

1.0.2

-

1.0.1

Add convergence plot

1.0.0

이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.