Image classification using data augmentation

버전 1.1.0 (3.51 MB) 작성자: Oge Marques
A simple example of a four-class image classifier using a small dataset, with and without data augmentation.
다운로드 수: 1.6K
업데이트 날짜: 2019/8/12

라이선스 보기

A simple example of a four-class image classifier using a small dataset (320 images of flowers: 80 sample x 4 categories) and a very simple CNN, with and without data augmentation.

The main goal of this example is to demonstrate the use of the MATLAB functionality for data augmentation in image classification solutions: the augmentedImageDatastore and the imageDataAugmenter.

This example should be easy to modify and expand to the user's needs.

Notes:
- The validation accuracy improves -- from ~79% (Part 1 in the code) to ~83% (Part 2) -- using a very simple CNN, as a result of data augmentation alone.
- Interestingly enough, using a pretrained AlexNet, the validation accuracy drops -- from 100% (Part 3) to ~98% (Part 4) -- which shows that data augmentation wouldn't be necessary in this case.

인용 양식

Oge Marques (2026). Image classification using data augmentation (https://kr.mathworks.com/matlabcentral/fileexchange/68728-image-classification-using-data-augmentation), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2019a
R2017b에서 R2019a까지의 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Deep Learning Toolbox에 대해 자세히 알아보기
버전 게시됨 릴리스 정보
1.1.0

Added Parts 3 and 4 (using a pretrained AlexNet) and fixed a few bugs.

1.0.0