Nonlinear System Identification using Spatio-Temporal RBF-NN

버전 1.1.2 (357 KB) 작성자: Shujaat Khan
In this submission, I implemented RBF, Fractional RBF, and Spatio-Temporal RBF Neural Network for nonlinear system identification task
다운로드 수: 790
업데이트 날짜: 2018/12/5

라이선스 보기

Herein, you will find three variants of radial basis function neural network (RBF-NN) for nonlinear system identification task. In particular, I implemented RBF with conventional and fractional gradient descent, and compared the performance with spatio-temporal RBF-NN.

* For citations see [cite as] section

인용 양식

Shujaat Khan (2026). Nonlinear System Identification using Spatio-Temporal RBF-NN (https://kr.mathworks.com/matlabcentral/fileexchange/68415-nonlinear-system-identification-using-spatio-temporal-rbf-nn), MATLAB Central File Exchange. 검색 날짜: .

Khan, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.

양식 더 보기

Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.

양식 더 보기

Khan, Shujaat, et al. “Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018

MATLAB 릴리스 호환 정보
개발 환경: R2015a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Deep Learning Toolbox에 대해 자세히 알아보기
버전 게시됨 릴리스 정보
1.1.2

- update citation information

1.1.1

- title change

1.1

- Comparison with conventional and fractional variant

1.0.2

- Simplification of code syntax

1.0.1

- Example added

1.0.0