Spectral Projected Gradient Method for the Positive Semi-definite Procrustes Problem

버전 1.0.0.0 (5.41 KB) 작성자: Harry Oviedo
This file contains a spectral projected gradiente method for PSDP.
다운로드 수: 78
업데이트 날짜: 2017/10/1

라이선스 보기

---------------------------------------------------------------------------------
Description:
This code implements an algorithm to solve the PSD Procrustes problem:
given rectangular matrices A and B, find the symmetric positive
semidefinite matrix X that minimizes the Frobenius norm of XA-B, i.e.
min 0.5||XA-B||_F^{2} s.t. X\in S_{+}(n),

where S_{+}(n) denote the set form by the all symmetric and
positive semi-definite matrices of size n-by-n with real entries.
---------------------------------------------------------------------------------

Reference:
Harry F. Oviedo Leon
"Un Método de Gradiente Projectado Espectral para el Problema
Procrustes Semidefinido Positivo". (ResearchGate)

In english: "Spectral Projected Gradient Method for the Positive
Semi-definite Procrustes Problem".

Author: Harry F. Oviedo Leon

Date: 01-Oct-2017

See help

>> help demo_PSDP:

% Example 1:
>> demo_PSDP()

% Example 2:
>> demo_PSDP(1000,1000,1,0)

인용 양식

Harry Oviedo (2025). Spectral Projected Gradient Method for the Positive Semi-definite Procrustes Problem (https://kr.mathworks.com/matlabcentral/fileexchange/64597-spectral-projected-gradient-method-for-the-positive-semi-definite-procrustes-problem), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2016a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Conditional Mean Models에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0.0