Delta Learning, Widrow Hoff Learning

버전 1.0.0.0 (57.5 KB) 작성자: Bhartendu
Delta Learning rule, Widrow-Hoff Learning rule (Artificial Neural Networks)
다운로드 수: 348
업데이트 날짜: 2017/5/22

라이선스 보기

When comparing with the network output with desired output, if there is error the weight vector w(k) associated with the ith processing unit at the time instant k is corrected (adjusted) as
w(k+1) = w(k) + D[w(k)]
where, D[w(k)] is the change in the weight vector and will be explicitly given for various learning rules.
Delta Learning rule is given by:
w(k+1) = w(k) + eta*[ d(k) - f{ w'(k)*x(k) } ] *f'{ w'(k)*x(k) } *x(k)

Widrow-Hoff Learning rule is given by:

w(k+1) = w(k) + eta*[ d(k) - w'(k)*x(k) ] *x(k)
here: f{ w'(k)*x(k) } = w'(k)*x(k)

Reference:
http://www.ent.mrt.ac.lk/~ekulasek/ami/PartC.pdf

인용 양식

Bhartendu (2024). Delta Learning, Widrow Hoff Learning (https://www.mathworks.com/matlabcentral/fileexchange/63050-delta-learning-widrow-hoff-learning), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2016a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0.0