Numerical Probability Density Function from Characteristic Function

버전 1.0.0.0 (748 Bytes) 작성자: Giulio Francesca
Computes a numerical probability density function starting from a Characterstic function.
다운로드 수: 122
업데이트 날짜: 2017/1/28

라이선스 보기

This function computes the numerical probability density function of the convolution of the Fourier Transforms of a standard mean reverting process without long term mean level and a mean reverting process presenting a jump rather than a diffusion. From such a numerical probability density function it is possible to estimate the parameter values running a standard maximum likelihood procedure. This machinery represents a good choice when modelling variables that present peaks in their distribution that fastly come back to their mean level.
The function takes as inputs the sample space, the initial values for the processes X and Y and the values of the parameters for the two considered processes. When one desires to estimate such parameters via maximum likelihood, just run the Matlab function mle, taking as input conv_pdf and the considered sample data.
Example:
x = -1:0.01:3;
init = [0 0];
param = [5 0.2 20 0.5 0.1 0.2]

인용 양식

Giulio Francesca (2026). Numerical Probability Density Function from Characteristic Function (https://kr.mathworks.com/matlabcentral/fileexchange/59896-numerical-probability-density-function-from-characteristic-function), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2015a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기
버전 게시됨 릴리스 정보
1.0.0.0

sample image inserted
References
Hambly, Ben, Sam Howison, and Tino Kluge. "Modelling spikes and pricing swing options in electricity markets." Quantitative Finance 9.8 (2009): 937-949.
.