Statistical Spectrum and Frequency Estimation Examples
Some important classical (non-parametric) and modern (parametric) statistical spectrum and frequency estimation algorithms are demonstrated, reproducing the examples from chapter 8 of M. Hayes book. Namely, the following Methods are exposed:
A) Non-parametric Methods.
i) The Periodogram.
ii) Barlett's Method: Periodogram Averaging.
iii) Welch's Method: Averaging Modified Periodograms.
iv) Blackman-Tukey Method: Periodogram Smoothing.
B) Parametric Methods.
i) The Autocorrelation Method.
ii) The Covariance Method.
iii) The Modified Covariance Method.
iv) The Burg Algorithm.
C) Frequency Estimation.
i) Pisarenko Harmonic Decomposition (PHD).
ii) Multiple Signal Classification (MUSIC).
iii) The Eigenvector Method.
iv) The Minimum Norm Algorithm.
인용 양식
Ilias Konsoulas (2026). Statistical Spectrum and Frequency Estimation Examples (https://kr.mathworks.com/matlabcentral/fileexchange/57772-statistical-spectrum-and-frequency-estimation-examples), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
태그
도움
도움 받은 파일: Statistical Digital Signal Processing and Modeling
Examples/html/
| 버전 | 게시됨 | 릴리스 정보 | |
|---|---|---|---|
| 1.0.0.0 | Corrected some x-axis inconsistencies. No all x-axis frequency variables are in units of pi. I have updated the link to M. Hayes .m scripts necessary to run these examples.
|
