EM for Mixture of Bernoulli (Unsupervised Naive Bayes) for clustering binary data
Just like EM of Gaussian Mixture Model, this is the EM algorithm for fitting Bernoulli Mixture Model.
GMM is useful for clustering real value data. However, for binary data (such as bag of word feature) Bernoulli Mixture is more suitable.
EM for Mixture of Bernoulli can be also viewed as an unsupervised version of Naive Bayes classifier, where the M step is Naive Bayes training and E step is Naive Bayes prediction.
This package is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).
인용 양식
Mo Chen (2023). EM for Mixture of Bernoulli (Unsupervised Naive Bayes) for clustering binary data (https://www.mathworks.com/matlabcentral/fileexchange/55882-em-for-mixture-of-bernoulli-unsupervised-naive-bayes-for-clustering-binary-data), MATLAB Central File Exchange. 검색됨 .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
태그
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!mixBern/
버전 | 게시됨 | 릴리스 정보 | |
---|---|---|---|
1.0.0.0 |