Deep Neural Network

버전 1.19 (4.57 MB) 작성자: Masayuki Tanaka
It provides deep learning tools of deep belief networks (DBNs).
다운로드 수: 50.8K
업데이트 날짜: 2016/8/5

라이선스 보기

편집자 메모: Popular File 2018

Run testDNN to try!
Each function includes description. Please check it!
It provides deep learning tools of deep belief networks (DBNs) of stacked restricted Boltzmann machines (RBMs). It includes the Bernoulli-Bernoulli RBM, the Gaussian-Bernoulli RBM, the contrastive divergence learning for unsupervised pre-training, the sparse constraint, the back projection for supervised training, and the dropout technique.
The sample codes with the MNIST dataset are included in the mnist folder. Please, see readme.txt in the mnist folder.
Hinton et al, Improving neural networks by preventing co-adaptation of feature detectors, 2012.
Lee et al, Sparse deep belief net model for visual area V2, NIPS 2008.
http://read.pudn.com/downloads103/sourcecode/math/421402/drtoolbox/techniques/train_rbm.m__.htm
Modified the implementation of the dropout.
Added feature of the cross entropy object function for the neural network training.
It includes the implementation of the following paper. If you use this toolbox, please cite the following paper:
Masayuki Tanaka and Masatoshi Okutomi, A Novel Inference of a Restricted Boltzmann Machine, International Conference on Pattern Recognition (ICPR2014), August, 2014.
Related SlideShare and pdf are available.
http://like.silk.to/matlab/dnn.html

인용 양식

Masayuki Tanaka (2024). Deep Neural Network (https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2012a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Simulation에 대해 자세히 알아보기
도움

도움 준 파일: wavelet transform of image, deep learning tool

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.19

Modified explanation of option.

1.18.0.0

Added link information.
Bug fixed for the GBDBN.

1.17.0.0

Added ICPR2014 implimentation.

1.16.0.0

The bug related the object function is fixed.

1.15.0.0

I added the implementation of the ICPR 2014 algorithm.

1.14.0.0

Added sample of evaluation test data of MNIST.

1.13.0.0

CalcErrorRate is debuged.

1.12.0.0

Fixed the bug in trainDBN.m for GBDBN.

1.11.0.0

Sample codes of the MNIST dataset are included.

1.10.0.0

The bug is fixed.

1.9.0.0

Bug fix.

1.8.0.0

Modified testDNN.m

1.7.0.0

Bug fixed in GetDroppedDBN.

1.6.0.0

Some bags are fixed.

1.5.0.0

Debugged. Thank you, chong!

1.2.0.0

Modified the implementation of the dropout.
Added feature of the cross entropy object function for the neural network training.

1.0.0.0