PCA and ICA Package

버전 2.2.0.0 (2.12 MB) 작성자: Brian Moore
Implements Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
다운로드 수: 41.4K
업데이트 날짜: 2018/5/5

라이선스 보기

This package contains functions that implement Principal Component Analysis (PCA) and Independent Component Analysis (ICA).
PCA and ICA are implemented as functions in this package, and multiple examples are included to demonstrate their use.
In PCA, multi-dimensional data is projected onto the singular vectors corresponding to a few of its largest singular values. Such an operation effectively decomposes the input single into orthogonal components in the directions of largest variance in the data. As a result, PCA is often used in dimensionality reduction applications, where performing PCA yields a low-dimensional representation of data that can be reversed to closely reconstruct the original data.
In ICA, multi-dimensional data is decomposed into components that are maximally independent in an appropriate sense (kurtosis and negentropy, in this package). ICA differs from PCA in that the low-dimensional signals do not necessarily correspond to the directions of maximum variance; rather, the ICA components have maximal statistical independence. In practice, ICA can often uncover disjoint underlying trends in multi-dimensional data.

인용 양식

Brian Moore (2024). PCA and ICA Package (https://www.mathworks.com/matlabcentral/fileexchange/38300-pca-and-ica-package), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2011b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기
도움

도움 준 파일: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
2.2.0.0

Improving implementation efficiency.

2.1.0.0

Adding support for audioread() function in loadAudio()

2.0.0.0

- Adding support for kurtosis-based Fast ICA
- Adding the max-kurtosis ICA algorithm
- Shiny new ICA demos on source separation (including real audio data)

1.4.0.0

Uploading .zip (omitted in last update)

1.3.0.0

Improving documentation and code performance

1.2.0.0

Updating myPCA() documentation

1.1.0.0

Fixing bug in myMultiGaussian(). Needed to use lower triangular Cholesky factorization, not the upper triangular version.

1.0.0.0