lorentzfit(x,y,varargin)
% LORENTZFIT fits a single- or multi-parameter Lorentzian function to data
%
% LORENTZFIT(X,Y) returns YPRIME(X), a Lorentzian fit to the data
% found using LSQCURVEFIT. The function Y(X) is fit by the model:
% YPRIME(X) = P1./((X - P2).^2 + P3) + C.
%
% [YPRIME PARAMS RESNORM RESIDUAL JACOBIAN] = LORENTZFIT(X,Y) returns YPRIME(X)
% values in addition to fit-parameters PARAMS = [P1 P2 P3 C]. The RESNORM,
% RESIDUAL, and JACOBIAN outputs from LSQCURVEFIT are also returned.
%
% [...] = LORENTZFIT(X,Y,P0) can be used to provide starting
% values (P0 = [P01 P02 P03 C0]) for the parameters in PARAMS.
%
% [...] = LORENTZFIT(X,Y,P0,BOUNDS) may be used to define lower
% and upper bounds for the possbile values for each parameter in PARAMS.
% BOUNDS = [LB1 LB2 LB3 LB4;
% UB1 UB2 UB3 UB4].
% If the user does not wish to manually define values for P0, it may be
% enetered as an empty matrix P0 = []. In this case, default values will
% be used. The default bounds for all parameters are (-Inf,Inf).
%
% [...] = LORENTZFIT(X,Y,P0,BOUNDS,NPARAMS) may be used to specify the
% number of parameters used in the Lorentzian fitting function. The
% number of parameters defined in P0 and BOUNDS must match the function
% specified by NPARAMS. If the user does not wish to manually define
% values for P0 or BOUNDS, both may be enetered as empty matricies:
% P0 = []; BOUNDS = [].
%
% -NPARAMS options
%
% '1' - Single parameter Lorentzian (no constant term)
% L1(X) = 1./(P1(X.^2 + 1))
%
% '1c' - Single parameter Lorentzian (with constant term)
% L1C(X) = 1./(P1(X.^2 + 1)) + C
%
% '2' - Two parameter Lorentzian (no constant term)
% L2(X) = P1./(X.^2 + P2)
%
% '2c' - Two parameter Lorentzian (with constant term)
% L2C(X) = P1./(X.^2 + P2) + C
%
% '3' - Three parameter Lorentzian (no constant term)
% L3(X) = P1./((X - P2).^2 + P3)
%
% [DEFAULT] '3c' - Three parameter Lorentzian (with constant term)
% L3C(X) = P1./((X - P2).^2 + P3) + C
%
% [...] = LORENTZFIT(X,Y,P0,BOUNDS,NPARAMS,OPTIONS) defines the OPTIONS
% array for the MATLAB function LSQCURVEFIT. OPTIONS can be set using the
% following command:
%
% OPTIONS = optimset('PARAM1',VALUE1,'PARAM2',VALUE2,...);
%
% See the help documentation for OPTIMSET for more details.
%
%
% X and Y must be the same size, numeric, and non-complex. P0 and BOUNDS
% must also be numeric and non-complex. NPARAMS is a character array.
%
% Examples:
% x = -16:0.1:35;
% y = 19.4./((x - 7).^2 + 15.8) + randn(size(x))./10;
% [yprime1 params1 resnorm1 residual1 jacobain1] = lorentzfit(x,y,[20 10 15 0]);
% figure; plot(x,y,'b.','LineWidth',2)
% hold on; plot(x,yprime1,'r-','LineWidth',2)
%
% [yprime2 params2 resnorm2 residual2 jacobian2] = lorentzfit(x,y,[],[],'3');
% figure; plot(x,y,'b.','LineWidth',2)
% hold on; plot(x,yprime2,'r-','LineWidth',2)
%
% See also: lsqcurvefit.
인용 양식
Jered Wells (2024). lorentzfit(x,y,varargin) (https://www.mathworks.com/matlabcentral/fileexchange/33775-lorentzfit-x-y-varargin), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
- AI and Statistics > Statistics and Machine Learning Toolbox > Probability Distributions > Resampling Techniques >
태그
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!버전 | 게시됨 | 릴리스 정보 | |
---|---|---|---|
1.7.0.0 | Provides the Jacobian output by lsqcurvefit |
||
1.6.0.0 | Added stopping thresholds for fitting based on magnitude of input data. |
||
1.5.0.0 | Added INPUTCHECK and OPTIONS. Rearranged SWITCH loop.
|
||
1.4.0.0 | Better identified default functionality in help file |
||
1.3.0.0 | Included option to select one, two, or three parameter Lorentzian model with or without constant parameter.
|
||
1.2.0.0 | Documentation updated to match MATLAB standard for help file
|
||
1.1.0.0 | Cleaned up description |
||
1.0.0.0 |