Elliptic fourier for shape analysis

버전 1.3.0.0 (6.65 KB) 작성자: Auralius Manurung
Implementation of elliptic fourier for shape analysis.
다운로드 수: 1.7K
업데이트 날짜: 2016/5/19

라이선스 보기

1) plot_chain_code(ai, color, line_width)
This function will plot the given chain code. The chain code (ai) should be in
column vector.
Example:
>> ai = [5 4 1 2 3 4 3 0 0 1 0 1 0 0 0 7 7 1 1 0 7 5 4 5 4 5 0 6 5 4 1 3 4 4 4 4 6];
>> plot_chain_code(ai)

2) plot_fourier_approx(ai, n, m, normalized, color, line_width)

This function will plot the Fourier approximation, given a chain code (ai),
number of harmonic elements (n), and number of points for reconstruction (m).
Normalization can be applied by setting "normalized = 1".

3) output = calc_traversal_dist(ai, n, m, normalized)

This function will generate position coordinates of chain code (ai). Number of
harmonic elements (n), and number of points for reconstruction (m) must be
specified.
The output is a matrix of [x1, y1; x2, y2; ...; xm, ym].

3) output = fourier_approx(ai, n, m, normalized)

This function will generate position coordinates of Fourier approximation of
chain code (ai). Number of harmonic elements (n), and number of points for
reconstruction (m) must be specified.
The output is a matrix of [x1, y1; x2, y2; ...; xm, ym].

4) output = calc_harmonic_coefficients(ai, n)

This function will calculate the n-th set of four harmonic coefficients.
The output is [an bn cn dn]

5) [A0, C0] = calc_dc_components(ai)

This function will calculate the bias coefficients A0 and C0.

6) output = calc_traversal_dist(ai)

Traversal distance is defined as accumulated distance travelled by every
component of the chain code assuming [0 0] is the starting position.
Example:
>> x = calc_traversal_dist([1 2 3])
x =
1 1
1 2
0 3

7) output = calc_traversal_time(ai)

Traversal time is defined as accumulated time consumed by every
component of the chain code.
Example:
>> x = calc_traversal_time([1 2 3])
x =

1.4142
2.4142
3.8284

인용 양식

Auralius Manurung (2024). Elliptic fourier for shape analysis (https://www.mathworks.com/matlabcentral/fileexchange/32800-elliptic-fourier-for-shape-analysis), MATLAB Central File Exchange. 검색됨 .

MATLAB 릴리스 호환 정보
개발 환경: R2009a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Image Transforms에 대해 자세히 알아보기
커뮤니티
 Power Electronics Control 커뮤니티에 더 많은 파일이 있습니다

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.3.0.0

Corrected mistake on the equation based on João Neves' suggestion.
Updated as per feedback from Chrstopher Cramer.

1.1.0.0

Added function descriptions for better understanding

1.0.0.0