PCA (Principial Component Analysis)

버전 1.2.0.0 (1.48 KB) 작성자: Andreas
Principal Component Analysis Implementation of LindsaySmithPCA.pdf
다운로드 수: 2.5K
업데이트 날짜: 2010/3/18

라이선스 보기

- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
- Use only a certain number of the eigenvector(s)
- Do back-project to the original basis vectors

Implementation of
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

"A tutorial on Principial Component Analysis"

인용 양식

Andreas (2024). PCA (Principial Component Analysis) (https://www.mathworks.com/matlabcentral/fileexchange/26793-pca-principial-component-analysis), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2007b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기
도움

도움 준 파일: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.2.0.0

Update Link

1.1.0.0

description update

1.0.0.0