This is a tool for K-means clustering. After trying several different ways to program, I got the conclusion that using simple loops to perform distance calculation and comparison is most efficient and accurate because of the JIT acceleration in MATLAB.
The code is very simple and well documented, hence is suitable for beginners to learn k-means clustering algorithm.
Numerical comparisons show that this tool could be several times faster than kmeans in Statistics Toolbox.
인용 양식
Yi Cao (2025). Efficient K-Means Clustering using JIT (https://kr.mathworks.com/matlabcentral/fileexchange/19344-efficient-k-means-clustering-using-jit), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
태그
도움
도움 준 파일: Patch color selector
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!| 버전 | 게시됨 | 릴리스 정보 | |
|---|---|---|---|
| 1.0.0.0 | correct bugs in examples |
