Efficient K-Means Clustering using JIT

버전 1.0.0.0 (2.02 KB) 작성자: Yi Cao
A simple but fast tool for K-means clustering
다운로드 수: 14.1K
업데이트 날짜: 2008/4/16

라이선스 보기

This is a tool for K-means clustering. After trying several different ways to program, I got the conclusion that using simple loops to perform distance calculation and comparison is most efficient and accurate because of the JIT acceleration in MATLAB.

The code is very simple and well documented, hence is suitable for beginners to learn k-means clustering algorithm.

Numerical comparisons show that this tool could be several times faster than kmeans in Statistics Toolbox.

인용 양식

Yi Cao (2025). Efficient K-Means Clustering using JIT (https://kr.mathworks.com/matlabcentral/fileexchange/19344-efficient-k-means-clustering-using-jit), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2007b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기
도움

도움 준 파일: Patch color selector

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0.0

correct bugs in examples