Dream-Optimization-Algorithm-DOA-

버전 1.0.0 (3.16 KB) 작성자: yifan
DOA
다운로드 수: 742
업데이트 날짜: 2025/1/3
As optimization problems grow increasingly complex, traditional deterministic algorithms often struggle to address these challenges. Metaheuristic algorithms, with their flexibility and low problem dependency, have emerged as a competitive alternative. This paper introduces the Dream Optimization Algorithm (DOA), inspired by human dreams, which exhibit partial memory retention, forgetting, and logical self-organization characteristics that bear strong similarities to the optimization process in metaheuristic algorithms. DOA incorporates a foundational memory strategy, a forgetting and supplementation strategy to balance exploration and exploitation, and a dream-sharing strategy to improve the ability to escape local optima. The optimization process is divided into exploration and exploitation phases, yielding satisfactory optimization results. This paper qualitatively analyzes DOA's search history, exploration--exploitation capabilities, and population diversity, showing its ability to adapt to problems of varying complexity. Quantitative analysis using three CEC benchmarks (CEC2017, CEC2019, CEC2022) compares DOA against 27 algorithms, including CEC2017 champion algorithms. Results indicate that DOA outperforms all competitors, showcasing superior convergence, advancement, stability, adaptability, robustness, significance, and reliability. Additionally, DOA achieved optimal results in eight engineering constrained optimization problems and in the practical application of photovoltaic cell model parameter optimization, demonstrating its effectiveness and practicality.

인용 양식

yifan (2026). Dream-Optimization-Algorithm-DOA- (https://github.com/xiaolang1999/Dream-Optimization-Algorithm-DOA-), GitHub. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R2023b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
태그 태그 추가

GitHub 디폴트 브랜치를 사용하는 버전은 다운로드할 수 없음

버전 게시됨 릴리스 정보
1.0.0

이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.