In this study, a novel hybrid metaheuristic algorithm, termed (BES-GO), is proposed for solving benchmark structural design optimization problems, including welded beam design, three-bar truss system optimization, minimizing vertical deflection in an I-beam, optimizing the cost of tubular columns, and minimizing the weight of cantilever beams. The performance of the proposed BES-GO algorithm was compared with ten state-of-the-art metaheuristic algorithms: Bald Eagle Search (BES), Growth Optimizer (GO), Ant Lion Optimizer (ALO), Tuna Swarm Optimization (TSO), Tunicate Swarm Algorithm (TSA), Harris Hawk Optimization (HHO), Artificial Gorilla Troops Optimizer (GTO), Dingo Optimizer (DOA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The hybrid algorithm leverages the strengths of both BES and GO techniques to enhance search capabilities and convergence rates. The evaluation, based on the CEC’20 test suite and the selected structural design problems, shows that BES-GO consistently outperformed the other algorithms in terms of convergence speed and achieving optimal solutions, making it a robust and effective tool for structural Optimization.
인용 양식
Prof. Dr. Essam H Houssein (2025). BES-GO (https://www.mathworks.com/matlabcentral/fileexchange/174435-bes-go), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
개발 환경:
R2024b
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux태그
도움
도움 받은 파일: Bald eagle search Optimization algorithm (BES), CEC2022
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!BES_GO code
버전 | 게시됨 | 릴리스 정보 | |
---|---|---|---|
1.0.0 |