LINORTFIT2(X,Y) finds the coefficients of a 1st-order polynomial that best fits the data (X,Y) in an ORTHOGONAL least-squares sense. Consider the line P(1)*t + P(2), and the minimum (Euclidean) distance between this line and each datapoint [X(i) Y(i)] -- LINORTFIT2 finds P(1) and P(2) such that the sum of squared distances is minimized.
LINORTFITN(DATA) finds the coefficients of a hyperplane (in Hessian normal form) that best fits the data in an ORTHOGONAL least-squares sense. Consider the hyperplane
H = {x | dot(N,x) + C == 0},
and the minimum (Euclidean) distance between this hyperplane and each datapoint DATA(i,:) -- LINORTFITN finds N and C such that the sum of squared distances is minimized.
There is already a file in Matlab Central for orthogonal linear regression in 2 dimensions, but it uses FMINSEARCH (i.e., unconstrained nonlinear optimization by Nelder-Mead simplex search) versus this simpler, numerically stable, multidimensional version based on SVD approximation.
인용 양식
F. Carr (2025). Orthogonal Linear Regression (https://kr.mathworks.com/matlabcentral/fileexchange/16800-orthogonal-linear-regression), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
- MATLAB > Mathematics > Interpolation >
태그
도움
도움 받은 파일: Orthogonal Linear Regression
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!| 버전 | 게시됨 | 릴리스 정보 | |
|---|---|---|---|
| 1.0.0.0 |
