Stacked auto-encoders for audio classification

버전 1.0.0 (3.02 KB) 작성자: Arvind
We evaluates the performance of stacked auto-encoders for designing a speech/music classifier on S&S and GTZAN dataset
다운로드 수: 39
업데이트 날짜: 2023/7/26

라이선스 보기

This work evaluates the performance of stacked auto-encoders based deep neural network for designing a speech/music classifier on S&S and GTZAN dataset using visual features. The hidden layers of the neural network are initially trained in unsupervised manner using auto-encoders and are stacked with the final softmax layer. Different experiments were conducted on time-frequency features derived from Spectrogram and Chromagram. Performances of the combination of stacked auto-encoder and softmax classifier was further compared with traditional classifiers and different deep learning techniques. Best classification accuracy of 93.05% and 94.73% is observed for fused features for S&S and GTZAN datasets respectively.

인용 양식

Arvind (2025). Stacked auto-encoders for audio classification (https://kr.mathworks.com/matlabcentral/fileexchange/132752-stacked-auto-encoders-for-audio-classification), MATLAB Central File Exchange. 검색 날짜: .

Kumar, Arvind, et al. “Stacked Auto-Encoders Based Visual Features for Speech/Music Classification.” Expert Systems with Applications, vol. 208, Elsevier BV, Dec. 2022, p. 118041, doi:10.1016/j.eswa.2022.118041.

양식 더 보기
MATLAB 릴리스 호환 정보
개발 환경: R2021a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0