Rectangular Confidence Regions

버전 1.0.0.0 (85.6 KB) 작성자: Tom Davis
Confidence Hypercubes
다운로드 수: 2K
업데이트 날짜: 2008/3/17

라이선스 보기

R = RCR(S) computes the semi-edge-length of the mean-centered hypercube with 95% probability given S, which is either a covariance matrix or a vector of standard deviations from a multivariate normal distribution. If S is a real, nonnegative vector, RCR(S) is equivalent to RCR(DIAG(S.^2)). Scalar S is treated as a standard deviation.

R = RCR(S,P) computes the semi-edge-length of the hypercube with probability P instead of the default, which is 0.95. R is the two-tailed, equicoordinate quantile corresponding to P. The hypercube edge-length is 2*R.

R = RCR(S,P,NP) uses NP quadrature points instead of the default, which is 2^11. Smaller values of NP result in faster computation, but may yield less accurate results. Use [] as a placeholder to obtain the default value of P.

R = RCR(S,P,NP,M) performs a bootstrap validation with M normally distributed random samples of size 1e6. Use [] as a placeholder to obtain the default value of NP.

R = RCR(S,P,NP,[M N]) performs a bootstrap validation with M normally distributed random samples of size N.

[R,E] = RCR(S,...) returns an error estimate E.

인용 양식

Tom Davis (2024). Rectangular Confidence Regions (https://www.mathworks.com/matlabcentral/fileexchange/11627-rectangular-confidence-regions), MATLAB Central File Exchange. 검색 날짜: .

MATLAB 릴리스 호환 정보
개발 환경: R13
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
카테고리
Help CenterMATLAB Answers에서 Industrial Statistics에 대해 자세히 알아보기
도움

도움 받은 파일: Confidence Region Radius

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0.0

updated contact information