This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.
[2] Frazier (2018). https://arxiv.org/abs/1807.02811
[3] Snoek (2012). https://arxiv.org/pdf/1206.2944.pdf
인용 양식
Karl Ezra Pilario (2025). Tutorial: Bayesian Optimization (https://kr.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
개발 환경:
R2022a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux태그
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!| 버전 | 게시됨 | 릴리스 정보 | |
|---|---|---|---|
| 1.0.0 |
