Improved-Aptenodytes-Forsteri-Optimization-IAFO-Algorithm-

버전 1.0 (3.36 MB) 작성자:
Improved Aptenodytes Forsteri Optimization (IAFO) : Algorithm and applications

다운로드 수: 35

업데이트 날짜: 2022/3/26

GitHub에서 호스트

Improved-Aptenodytes-Forsteri-Optimization-IAFO-Algorithm-

Improved Aptenodytes Forsteri Optimization (IAFO) : Algorithm and applications

%%------------------------------------------------%%

1.测试函数

2.现实问题

IAFO_final1 用于连续问题的改进IAFO算法，局部搜索策略是拟牛顿法

IAFO_final0 用于离散问题的改进IAFO算法，局部搜索策略是2-opt,该策略极其简单，建议根据实际问题特性，更换其他的离散类邻域搜索方法

TSP问题

FJSP问题

1. Bunchmark functions

The algorithm is the original AFO algorithm (AFO2,AFO3,different versions)

Bunchmark function set is CEC2017 Bunchmark function set

1. Real-world problems

There are two algorithms

IAFO_final1 is an improved IAFO algorithm for continuous problems, and the local search strategy is the proposed Newton method

IAFO_final0 is an improved IAFO algorithm for discrete problems, the local search strategy is 2-opt, the strategy is extremely simple, it is recommended to replace other discrete class neighborhood search methods according to the actual problem characteristics

The solved problems are

Industrial design problems

TSP problem

FJSP problem

Path planning problem (raster map)

%%--------------------------------------------%%

Copy right

%%--------------------------------------------%%

Paper

Yang Z, Deng L B, Wang Y, et al. Aptenodytes Forsteri Optimization: Algorithm and applications[J]. Knowledge-Based Systems, 2021, 232: 107483.

%%--------------------------------------------%%

Author：Yang Zhe

E-mail: 454170989@qq.com

School: University of Manchester, UK

%%--------------------------------------------%%

`````` ——逍遥浮世，与道俱成
``````

%%--------------------------------------------%%

인용 양식

Zhe Yang (2022). Improved-Aptenodytes-Forsteri-Optimization-IAFO-Algorithm- (https://github.com/TwilightArchonYz/Improved-Aptenodytes-Forsteri-Optimization-IAFO-Algorithm-/releases/tag/1.0), GitHub. 검색됨 .

Yang Z, Deng L B, Wang Y, et al. Aptenodytes Forsteri Optimization: Algorithm and applications[J]. Knowledge-Based Systems, 2021, 232: 107483.

개발 환경: R2022a
모든 릴리스와 호환
플랫폼 호환성
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.
이 GitHub 애드온의 문제를 보거나 보고하려면 GitHub 리포지토리로 가십시오.