Problem 58882. Neural Nets: Activation functions
Return values of selected Activation function type for value,vector, and matrices.
y=Activation(x,id); where id is 1:4 for ReLU, sigmoid, hyperbolic_tan, Softmax
ReLU: Rectified Linear Unit, clips negatives max(0,x) Trains faster than sigmoid
Sigmoid: Exponential normalization [0:1]
HyperTan: Normalization[-1:1] tanh(x)
Softmax: Normalizes output sum to 1, individual values [0:1] Used on Output node
Working though a series of Neural Net challenges from Perceptron, Hidden Layers, Back Propogation, ..., to the Convolutional Neural Net/Training for Handwritten Digits from Mnist.
Might take a day or two to completely cover Neural Nets in a Matlab centric fashion.
Essentially Out=Softmax(ReLU(X*W)*WP)
Solution Stats
Problem Comments
-
1 Comment
Richard Zapor
on 21 Aug 2023
Multi-Case Softmax should be y=exp(x)./sum(exp(x),2)
Solution Comments
Show commentsProblem Recent Solvers10
Suggested Problems
-
The Goldbach Conjecture, Part 2
2333 Solvers
-
Project Euler: Problem 7, Nth prime
1427 Solvers
-
605 Solvers
-
Back to basics 11 - Max Integer
785 Solvers
-
144 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!