Different frequency responses using [z,p,k] method and [b,a] for 2nd order elliptical filter

조회 수: 4 (최근 30일)
Hi, I am designing an elliptical filter and using 2nd order. My code is below, however, both of them display different frequency responses. Why is that so? Am I doing something wrong here? However, when I am plotting for 4th order, both responses are same.
%Filter design
[b,a]=ellip(2,20,25,200/210,'high');
% [b,a]=ellip(2,20,25,[2000 9000]/(fs/2),'bandpass');
fvtool(b,a)
[z,p,k] = ellip(2,20,25,200/210,'high');
sos = zp2sos(z,p,k);
fvtool(sos)

채택된 답변

Star Strider
Star Strider 2021년 7월 19일
You are doing everything correctly, however you only need to use the second-order-section (‘sos’) representation, since it essentially guarantees an efficient, stable filter. Transfer-function implementations can produce unstable or unreliable results.
What may be confusing the issue however are the arguments to the ellip function. This designs a second-order filter with a passband attenuation of 20 dB and a stopband attenuation of 25 dB. It may be worth reconsidering those values in order to get a usable filter. I suggest that you start with the ellipord function, and go from there.
Fs = 420;
[z,p,k] = ellip(2,20,25,200/210,'high');
[sos,g] = zp2sos(z,p,k);
figure
freqz(sos, 2^16, Fs)
.
  댓글 수: 10

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Paul
Paul 2021년 7월 19일
편집: Paul 2021년 7월 19일
If fvtool is like freqz, you need to make sure that the sos input has more than one row. Otherwise, the input might not be interpreted as an sos input. Here's an example with freqz.
[b,a]=ellip(2,20,25,200/210,'high');
[z,p,k] = ellip(2,20,25,200/210,'high');
[sos,g] = zp2sos(z,p,k);
freqz(b,a)
freqz(sos)
freqz([sos;[g 0 0 1 0 0]]) % add another section that is gain g for the expected response
  댓글 수: 3
Paul
Paul 2021년 7월 20일
Each second order section is of the form [b a], so an sos array for n sections is n x 6 is of the form:
[b1 a1;
[b2 a2;
.
.
.
bn an]
So that second section represents
b2 = [g 0 0]
a2 = [1 0 0]
which is just a gain of g. As I showed (and stated in doc freqz) if you want to use sos as input to freqz, it has to have at least two sections. So I added a second section that is effectively a unity gain of g to a) make freqz realize the input is sos, and b) to make the gain of the product of those sos's match the gain of the filter.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Digital Filter Design에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by